ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnrnov Unicode version

Theorem fnrnov 6091
Description: The range of an operation expressed as a collection of the operation's values. (Contributed by NM, 29-Oct-2006.)
Assertion
Ref Expression
fnrnov  |-  ( F  Fn  ( A  X.  B )  ->  ran  F  =  { z  |  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) } )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, F, y, z

Proof of Theorem fnrnov
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 fnrnfv 5624 . 2  |-  ( F  Fn  ( A  X.  B )  ->  ran  F  =  { z  |  E. w  e.  ( A  X.  B ) z  =  ( F `
 w ) } )
2 fveq2 5575 . . . . . 6  |-  ( w  =  <. x ,  y
>.  ->  ( F `  w )  =  ( F `  <. x ,  y >. )
)
3 df-ov 5946 . . . . . 6  |-  ( x F y )  =  ( F `  <. x ,  y >. )
42, 3eqtr4di 2255 . . . . 5  |-  ( w  =  <. x ,  y
>.  ->  ( F `  w )  =  ( x F y ) )
54eqeq2d 2216 . . . 4  |-  ( w  =  <. x ,  y
>.  ->  ( z  =  ( F `  w
)  <->  z  =  ( x F y ) ) )
65rexxp 4821 . . 3  |-  ( E. w  e.  ( A  X.  B ) z  =  ( F `  w )  <->  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) )
76abbii 2320 . 2  |-  { z  |  E. w  e.  ( A  X.  B
) z  =  ( F `  w ) }  =  { z  |  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) }
81, 7eqtrdi 2253 1  |-  ( F  Fn  ( A  X.  B )  ->  ran  F  =  { z  |  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372   {cab 2190   E.wrex 2484   <.cop 3635    X. cxp 4672   ran crn 4675    Fn wfn 5265   ` cfv 5270  (class class class)co 5943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-ov 5946
This theorem is referenced by:  ovelrn  6094
  Copyright terms: Public domain W3C validator