| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnssresb | GIF version | ||
| Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 10-Oct-2007.) |
| Ref | Expression |
|---|---|
| fnssresb | ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ 𝐵) Fn 𝐵 ↔ 𝐵 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fn 5283 | . 2 ⊢ ((𝐹 ↾ 𝐵) Fn 𝐵 ↔ (Fun (𝐹 ↾ 𝐵) ∧ dom (𝐹 ↾ 𝐵) = 𝐵)) | |
| 2 | fnfun 5380 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 3 | funres 5321 | . . . . 5 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐵)) | |
| 4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun (𝐹 ↾ 𝐵)) |
| 5 | 4 | biantrurd 305 | . . 3 ⊢ (𝐹 Fn 𝐴 → (dom (𝐹 ↾ 𝐵) = 𝐵 ↔ (Fun (𝐹 ↾ 𝐵) ∧ dom (𝐹 ↾ 𝐵) = 𝐵))) |
| 6 | ssdmres 4990 | . . . 4 ⊢ (𝐵 ⊆ dom 𝐹 ↔ dom (𝐹 ↾ 𝐵) = 𝐵) | |
| 7 | fndm 5382 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 8 | 7 | sseq2d 3227 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹 ↔ 𝐵 ⊆ 𝐴)) |
| 9 | 6, 8 | bitr3id 194 | . . 3 ⊢ (𝐹 Fn 𝐴 → (dom (𝐹 ↾ 𝐵) = 𝐵 ↔ 𝐵 ⊆ 𝐴)) |
| 10 | 5, 9 | bitr3d 190 | . 2 ⊢ (𝐹 Fn 𝐴 → ((Fun (𝐹 ↾ 𝐵) ∧ dom (𝐹 ↾ 𝐵) = 𝐵) ↔ 𝐵 ⊆ 𝐴)) |
| 11 | 1, 10 | bitrid 192 | 1 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ 𝐵) Fn 𝐵 ↔ 𝐵 ⊆ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ⊆ wss 3170 dom cdm 4683 ↾ cres 4685 Fun wfun 5274 Fn wfn 5275 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-opab 4114 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-res 4695 df-fun 5282 df-fn 5283 |
| This theorem is referenced by: fnssres 5398 wrdred1hash 11059 plyreres 15311 |
| Copyright terms: Public domain | W3C validator |