| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnssresb | GIF version | ||
| Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 10-Oct-2007.) |
| Ref | Expression |
|---|---|
| fnssresb | ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ 𝐵) Fn 𝐵 ↔ 𝐵 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fn 5271 | . 2 ⊢ ((𝐹 ↾ 𝐵) Fn 𝐵 ↔ (Fun (𝐹 ↾ 𝐵) ∧ dom (𝐹 ↾ 𝐵) = 𝐵)) | |
| 2 | fnfun 5365 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 3 | funres 5309 | . . . . 5 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐵)) | |
| 4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun (𝐹 ↾ 𝐵)) |
| 5 | 4 | biantrurd 305 | . . 3 ⊢ (𝐹 Fn 𝐴 → (dom (𝐹 ↾ 𝐵) = 𝐵 ↔ (Fun (𝐹 ↾ 𝐵) ∧ dom (𝐹 ↾ 𝐵) = 𝐵))) |
| 6 | ssdmres 4978 | . . . 4 ⊢ (𝐵 ⊆ dom 𝐹 ↔ dom (𝐹 ↾ 𝐵) = 𝐵) | |
| 7 | fndm 5367 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 8 | 7 | sseq2d 3222 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹 ↔ 𝐵 ⊆ 𝐴)) |
| 9 | 6, 8 | bitr3id 194 | . . 3 ⊢ (𝐹 Fn 𝐴 → (dom (𝐹 ↾ 𝐵) = 𝐵 ↔ 𝐵 ⊆ 𝐴)) |
| 10 | 5, 9 | bitr3d 190 | . 2 ⊢ (𝐹 Fn 𝐴 → ((Fun (𝐹 ↾ 𝐵) ∧ dom (𝐹 ↾ 𝐵) = 𝐵) ↔ 𝐵 ⊆ 𝐴)) |
| 11 | 1, 10 | bitrid 192 | 1 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ 𝐵) Fn 𝐵 ↔ 𝐵 ⊆ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1372 ⊆ wss 3165 dom cdm 4673 ↾ cres 4675 Fun wfun 5262 Fn wfn 5263 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-res 4685 df-fun 5270 df-fn 5271 |
| This theorem is referenced by: fnssres 5383 wrdred1hash 11012 plyreres 15154 |
| Copyright terms: Public domain | W3C validator |