ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foima2 GIF version

Theorem foima2 5798
Description: Given an onto function, an element is in its codomain if and only if it is the image of an element of its domain (see foima 5485). (Contributed by BJ, 6-Jul-2022.)
Assertion
Ref Expression
foima2 (𝐹:𝐴onto𝐵 → (𝑌𝐵 ↔ ∃𝑥𝐴 𝑌 = (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑌   𝑥,𝐹
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem foima2
StepHypRef Expression
1 foima 5485 . . . 4 (𝐹:𝐴onto𝐵 → (𝐹𝐴) = 𝐵)
21eqcomd 2202 . . 3 (𝐹:𝐴onto𝐵𝐵 = (𝐹𝐴))
32eleq2d 2266 . 2 (𝐹:𝐴onto𝐵 → (𝑌𝐵𝑌 ∈ (𝐹𝐴)))
4 fofn 5482 . . 3 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
5 ssid 3203 . . 3 𝐴𝐴
6 fvelimab 5617 . . . 4 ((𝐹 Fn 𝐴𝐴𝐴) → (𝑌 ∈ (𝐹𝐴) ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝑌))
7 eqcom 2198 . . . . 5 ((𝐹𝑥) = 𝑌𝑌 = (𝐹𝑥))
87rexbii 2504 . . . 4 (∃𝑥𝐴 (𝐹𝑥) = 𝑌 ↔ ∃𝑥𝐴 𝑌 = (𝐹𝑥))
96, 8bitrdi 196 . . 3 ((𝐹 Fn 𝐴𝐴𝐴) → (𝑌 ∈ (𝐹𝐴) ↔ ∃𝑥𝐴 𝑌 = (𝐹𝑥)))
104, 5, 9sylancl 413 . 2 (𝐹:𝐴onto𝐵 → (𝑌 ∈ (𝐹𝐴) ↔ ∃𝑥𝐴 𝑌 = (𝐹𝑥)))
113, 10bitrd 188 1 (𝐹:𝐴onto𝐵 → (𝑌𝐵 ↔ ∃𝑥𝐴 𝑌 = (𝐹𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wrex 2476  wss 3157  cima 4666   Fn wfn 5253  ontowfo 5256  cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fo 5264  df-fv 5266
This theorem is referenced by:  foelrn  5799
  Copyright terms: Public domain W3C validator