ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foima2 GIF version

Theorem foima2 5661
Description: Given an onto function, an element is in its codomain if and only if it is the image of an element of its domain (see foima 5358). (Contributed by BJ, 6-Jul-2022.)
Assertion
Ref Expression
foima2 (𝐹:𝐴onto𝐵 → (𝑌𝐵 ↔ ∃𝑥𝐴 𝑌 = (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑌   𝑥,𝐹
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem foima2
StepHypRef Expression
1 foima 5358 . . . 4 (𝐹:𝐴onto𝐵 → (𝐹𝐴) = 𝐵)
21eqcomd 2146 . . 3 (𝐹:𝐴onto𝐵𝐵 = (𝐹𝐴))
32eleq2d 2210 . 2 (𝐹:𝐴onto𝐵 → (𝑌𝐵𝑌 ∈ (𝐹𝐴)))
4 fofn 5355 . . 3 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
5 ssid 3122 . . 3 𝐴𝐴
6 fvelimab 5485 . . . 4 ((𝐹 Fn 𝐴𝐴𝐴) → (𝑌 ∈ (𝐹𝐴) ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝑌))
7 eqcom 2142 . . . . 5 ((𝐹𝑥) = 𝑌𝑌 = (𝐹𝑥))
87rexbii 2445 . . . 4 (∃𝑥𝐴 (𝐹𝑥) = 𝑌 ↔ ∃𝑥𝐴 𝑌 = (𝐹𝑥))
96, 8syl6bb 195 . . 3 ((𝐹 Fn 𝐴𝐴𝐴) → (𝑌 ∈ (𝐹𝐴) ↔ ∃𝑥𝐴 𝑌 = (𝐹𝑥)))
104, 5, 9sylancl 410 . 2 (𝐹:𝐴onto𝐵 → (𝑌 ∈ (𝐹𝐴) ↔ ∃𝑥𝐴 𝑌 = (𝐹𝑥)))
113, 10bitrd 187 1 (𝐹:𝐴onto𝐵 → (𝑌𝐵 ↔ ∃𝑥𝐴 𝑌 = (𝐹𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wcel 1481  wrex 2418  wss 3076  cima 4550   Fn wfn 5126  ontowfo 5129  cfv 5131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fo 5137  df-fv 5139
This theorem is referenced by:  foelrn  5662
  Copyright terms: Public domain W3C validator