ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foima2 GIF version

Theorem foima2 5720
Description: Given an onto function, an element is in its codomain if and only if it is the image of an element of its domain (see foima 5415). (Contributed by BJ, 6-Jul-2022.)
Assertion
Ref Expression
foima2 (𝐹:𝐴onto𝐵 → (𝑌𝐵 ↔ ∃𝑥𝐴 𝑌 = (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑌   𝑥,𝐹
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem foima2
StepHypRef Expression
1 foima 5415 . . . 4 (𝐹:𝐴onto𝐵 → (𝐹𝐴) = 𝐵)
21eqcomd 2171 . . 3 (𝐹:𝐴onto𝐵𝐵 = (𝐹𝐴))
32eleq2d 2236 . 2 (𝐹:𝐴onto𝐵 → (𝑌𝐵𝑌 ∈ (𝐹𝐴)))
4 fofn 5412 . . 3 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
5 ssid 3162 . . 3 𝐴𝐴
6 fvelimab 5542 . . . 4 ((𝐹 Fn 𝐴𝐴𝐴) → (𝑌 ∈ (𝐹𝐴) ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝑌))
7 eqcom 2167 . . . . 5 ((𝐹𝑥) = 𝑌𝑌 = (𝐹𝑥))
87rexbii 2473 . . . 4 (∃𝑥𝐴 (𝐹𝑥) = 𝑌 ↔ ∃𝑥𝐴 𝑌 = (𝐹𝑥))
96, 8bitrdi 195 . . 3 ((𝐹 Fn 𝐴𝐴𝐴) → (𝑌 ∈ (𝐹𝐴) ↔ ∃𝑥𝐴 𝑌 = (𝐹𝑥)))
104, 5, 9sylancl 410 . 2 (𝐹:𝐴onto𝐵 → (𝑌 ∈ (𝐹𝐴) ↔ ∃𝑥𝐴 𝑌 = (𝐹𝑥)))
113, 10bitrd 187 1 (𝐹:𝐴onto𝐵 → (𝑌𝐵 ↔ ∃𝑥𝐴 𝑌 = (𝐹𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  wrex 2445  wss 3116  cima 4607   Fn wfn 5183  ontowfo 5186  cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fo 5194  df-fv 5196
This theorem is referenced by:  foelrn  5721
  Copyright terms: Public domain W3C validator