![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > foima2 | GIF version |
Description: Given an onto function, an element is in its codomain if and only if it is the image of an element of its domain (see foima 5482). (Contributed by BJ, 6-Jul-2022.) |
Ref | Expression |
---|---|
foima2 | ⊢ (𝐹:𝐴–onto→𝐵 → (𝑌 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑌 = (𝐹‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | foima 5482 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ 𝐴) = 𝐵) | |
2 | 1 | eqcomd 2199 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐵 = (𝐹 “ 𝐴)) |
3 | 2 | eleq2d 2263 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝑌 ∈ 𝐵 ↔ 𝑌 ∈ (𝐹 “ 𝐴))) |
4 | fofn 5479 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) | |
5 | ssid 3200 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
6 | fvelimab 5614 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ⊆ 𝐴) → (𝑌 ∈ (𝐹 “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑌)) | |
7 | eqcom 2195 | . . . . 5 ⊢ ((𝐹‘𝑥) = 𝑌 ↔ 𝑌 = (𝐹‘𝑥)) | |
8 | 7 | rexbii 2501 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑌 ↔ ∃𝑥 ∈ 𝐴 𝑌 = (𝐹‘𝑥)) |
9 | 6, 8 | bitrdi 196 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ⊆ 𝐴) → (𝑌 ∈ (𝐹 “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑌 = (𝐹‘𝑥))) |
10 | 4, 5, 9 | sylancl 413 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝑌 ∈ (𝐹 “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑌 = (𝐹‘𝑥))) |
11 | 3, 10 | bitrd 188 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → (𝑌 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑌 = (𝐹‘𝑥))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∃wrex 2473 ⊆ wss 3154 “ cima 4663 Fn wfn 5250 –onto→wfo 5253 ‘cfv 5255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fo 5261 df-fv 5263 |
This theorem is referenced by: foelrn 5796 |
Copyright terms: Public domain | W3C validator |