![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > foima2 | GIF version |
Description: Given an onto function, an element is in its codomain if and only if it is the image of an element of its domain (see foima 5455). (Contributed by BJ, 6-Jul-2022.) |
Ref | Expression |
---|---|
foima2 | ⊢ (𝐹:𝐴–onto→𝐵 → (𝑌 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑌 = (𝐹‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | foima 5455 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ 𝐴) = 𝐵) | |
2 | 1 | eqcomd 2193 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐵 = (𝐹 “ 𝐴)) |
3 | 2 | eleq2d 2257 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝑌 ∈ 𝐵 ↔ 𝑌 ∈ (𝐹 “ 𝐴))) |
4 | fofn 5452 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) | |
5 | ssid 3187 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
6 | fvelimab 5585 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ⊆ 𝐴) → (𝑌 ∈ (𝐹 “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑌)) | |
7 | eqcom 2189 | . . . . 5 ⊢ ((𝐹‘𝑥) = 𝑌 ↔ 𝑌 = (𝐹‘𝑥)) | |
8 | 7 | rexbii 2494 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑌 ↔ ∃𝑥 ∈ 𝐴 𝑌 = (𝐹‘𝑥)) |
9 | 6, 8 | bitrdi 196 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ⊆ 𝐴) → (𝑌 ∈ (𝐹 “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑌 = (𝐹‘𝑥))) |
10 | 4, 5, 9 | sylancl 413 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝑌 ∈ (𝐹 “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑌 = (𝐹‘𝑥))) |
11 | 3, 10 | bitrd 188 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → (𝑌 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑌 = (𝐹‘𝑥))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1363 ∈ wcel 2158 ∃wrex 2466 ⊆ wss 3141 “ cima 4641 Fn wfn 5223 –onto→wfo 5226 ‘cfv 5228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-v 2751 df-sbc 2975 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-opab 4077 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-fo 5234 df-fv 5236 |
This theorem is referenced by: foelrn 5766 |
Copyright terms: Public domain | W3C validator |