ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foima2 GIF version

Theorem foima2 5875
Description: Given an onto function, an element is in its codomain if and only if it is the image of an element of its domain (see foima 5553). (Contributed by BJ, 6-Jul-2022.)
Assertion
Ref Expression
foima2 (𝐹:𝐴onto𝐵 → (𝑌𝐵 ↔ ∃𝑥𝐴 𝑌 = (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑌   𝑥,𝐹
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem foima2
StepHypRef Expression
1 foima 5553 . . . 4 (𝐹:𝐴onto𝐵 → (𝐹𝐴) = 𝐵)
21eqcomd 2235 . . 3 (𝐹:𝐴onto𝐵𝐵 = (𝐹𝐴))
32eleq2d 2299 . 2 (𝐹:𝐴onto𝐵 → (𝑌𝐵𝑌 ∈ (𝐹𝐴)))
4 fofn 5550 . . 3 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
5 ssid 3244 . . 3 𝐴𝐴
6 fvelimab 5690 . . . 4 ((𝐹 Fn 𝐴𝐴𝐴) → (𝑌 ∈ (𝐹𝐴) ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝑌))
7 eqcom 2231 . . . . 5 ((𝐹𝑥) = 𝑌𝑌 = (𝐹𝑥))
87rexbii 2537 . . . 4 (∃𝑥𝐴 (𝐹𝑥) = 𝑌 ↔ ∃𝑥𝐴 𝑌 = (𝐹𝑥))
96, 8bitrdi 196 . . 3 ((𝐹 Fn 𝐴𝐴𝐴) → (𝑌 ∈ (𝐹𝐴) ↔ ∃𝑥𝐴 𝑌 = (𝐹𝑥)))
104, 5, 9sylancl 413 . 2 (𝐹:𝐴onto𝐵 → (𝑌 ∈ (𝐹𝐴) ↔ ∃𝑥𝐴 𝑌 = (𝐹𝑥)))
113, 10bitrd 188 1 (𝐹:𝐴onto𝐵 → (𝑌𝐵 ↔ ∃𝑥𝐴 𝑌 = (𝐹𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wrex 2509  wss 3197  cima 4722   Fn wfn 5313  ontowfo 5316  cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fo 5324  df-fv 5326
This theorem is referenced by:  foelrn  5876
  Copyright terms: Public domain W3C validator