Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > foima2 | GIF version |
Description: Given an onto function, an element is in its codomain if and only if it is the image of an element of its domain (see foima 5423). (Contributed by BJ, 6-Jul-2022.) |
Ref | Expression |
---|---|
foima2 | ⊢ (𝐹:𝐴–onto→𝐵 → (𝑌 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑌 = (𝐹‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | foima 5423 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ 𝐴) = 𝐵) | |
2 | 1 | eqcomd 2176 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐵 = (𝐹 “ 𝐴)) |
3 | 2 | eleq2d 2240 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝑌 ∈ 𝐵 ↔ 𝑌 ∈ (𝐹 “ 𝐴))) |
4 | fofn 5420 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) | |
5 | ssid 3167 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
6 | fvelimab 5550 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ⊆ 𝐴) → (𝑌 ∈ (𝐹 “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑌)) | |
7 | eqcom 2172 | . . . . 5 ⊢ ((𝐹‘𝑥) = 𝑌 ↔ 𝑌 = (𝐹‘𝑥)) | |
8 | 7 | rexbii 2477 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑌 ↔ ∃𝑥 ∈ 𝐴 𝑌 = (𝐹‘𝑥)) |
9 | 6, 8 | bitrdi 195 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ⊆ 𝐴) → (𝑌 ∈ (𝐹 “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑌 = (𝐹‘𝑥))) |
10 | 4, 5, 9 | sylancl 411 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝑌 ∈ (𝐹 “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑌 = (𝐹‘𝑥))) |
11 | 3, 10 | bitrd 187 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → (𝑌 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑌 = (𝐹‘𝑥))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 ∃wrex 2449 ⊆ wss 3121 “ cima 4612 Fn wfn 5191 –onto→wfo 5194 ‘cfv 5196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fo 5202 df-fv 5204 |
This theorem is referenced by: foelrn 5729 |
Copyright terms: Public domain | W3C validator |