ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foelrn Unicode version

Theorem foelrn 5721
Description: Property of a surjective function. (Contributed by Jeff Madsen, 4-Jan-2011.) (Proof shortened by BJ, 6-Jul-2022.)
Assertion
Ref Expression
foelrn  |-  ( ( F : A -onto-> B  /\  C  e.  B
)  ->  E. x  e.  A  C  =  ( F `  x ) )
Distinct variable groups:    x, A    x, C    x, F
Allowed substitution hint:    B( x)

Proof of Theorem foelrn
StepHypRef Expression
1 foima2 5720 . 2  |-  ( F : A -onto-> B  -> 
( C  e.  B  <->  E. x  e.  A  C  =  ( F `  x ) ) )
21biimpa 294 1  |-  ( ( F : A -onto-> B  /\  C  e.  B
)  ->  E. x  e.  A  C  =  ( F `  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   E.wrex 2445   -onto->wfo 5186   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fo 5194  df-fv 5196
This theorem is referenced by:  foco2  5722  ctmlemr  7073  ctm  7074  ctssdclemn0  7075  ctssdccl  7076  ctssdc  7078  enumctlemm  7079  fodju0  7111  exmidfodomrlemr  7158  exmidfodomrlemrALT  7159  ennnfonelemrn  12352  ctinf  12363  ctiunctlemfo  12372  subctctexmid  13881  pw1nct  13883
  Copyright terms: Public domain W3C validator