| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > foelrn | Unicode version | ||
| Description: Property of a surjective function. (Contributed by Jeff Madsen, 4-Jan-2011.) (Proof shortened by BJ, 6-Jul-2022.) |
| Ref | Expression |
|---|---|
| foelrn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | foima2 5822 |
. 2
| |
| 2 | 1 | biimpa 296 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-fo 5278 df-fv 5280 |
| This theorem is referenced by: foco2 5824 ctmlemr 7212 ctm 7213 ctssdclemn0 7214 ctssdccl 7215 ctssdc 7217 enumctlemm 7218 fodju0 7251 exmidfodomrlemr 7312 exmidfodomrlemrALT 7313 ennnfonelemrn 12823 ctinf 12834 ctiunctlemfo 12843 znidom 14452 znrrg 14455 subctctexmid 15974 pw1nct 15977 |
| Copyright terms: Public domain | W3C validator |