ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foelrn Unicode version

Theorem foelrn 5876
Description: Property of a surjective function. (Contributed by Jeff Madsen, 4-Jan-2011.) (Proof shortened by BJ, 6-Jul-2022.)
Assertion
Ref Expression
foelrn  |-  ( ( F : A -onto-> B  /\  C  e.  B
)  ->  E. x  e.  A  C  =  ( F `  x ) )
Distinct variable groups:    x, A    x, C    x, F
Allowed substitution hint:    B( x)

Proof of Theorem foelrn
StepHypRef Expression
1 foima2 5875 . 2  |-  ( F : A -onto-> B  -> 
( C  e.  B  <->  E. x  e.  A  C  =  ( F `  x ) ) )
21biimpa 296 1  |-  ( ( F : A -onto-> B  /\  C  e.  B
)  ->  E. x  e.  A  C  =  ( F `  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   E.wrex 2509   -onto->wfo 5316   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fo 5324  df-fv 5326
This theorem is referenced by:  foco2  5877  ctmlemr  7275  ctm  7276  ctssdclemn0  7277  ctssdccl  7278  ctssdc  7280  enumctlemm  7281  fodju0  7314  exmidfodomrlemr  7380  exmidfodomrlemrALT  7381  ennnfonelemrn  12990  ctinf  13001  ctiunctlemfo  13010  znidom  14621  znrrg  14624  subctctexmid  16366  pw1nct  16369
  Copyright terms: Public domain W3C validator