ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fun2ssres Unicode version

Theorem fun2ssres 5313
Description: Equality of restrictions of a function and a subclass. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
fun2ssres  |-  ( ( Fun  F  /\  G  C_  F  /\  A  C_  dom  G )  ->  ( F  |`  A )  =  ( G  |`  A ) )

Proof of Theorem fun2ssres
StepHypRef Expression
1 resabs1 4987 . . . 4  |-  ( A 
C_  dom  G  ->  ( ( F  |`  dom  G
)  |`  A )  =  ( F  |`  A ) )
21eqcomd 2210 . . 3  |-  ( A 
C_  dom  G  ->  ( F  |`  A )  =  ( ( F  |`  dom  G )  |`  A ) )
3 funssres 5312 . . . 4  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( F  |`  dom  G )  =  G )
43reseq1d 4957 . . 3  |-  ( ( Fun  F  /\  G  C_  F )  ->  (
( F  |`  dom  G
)  |`  A )  =  ( G  |`  A ) )
52, 4sylan9eqr 2259 . 2  |-  ( ( ( Fun  F  /\  G  C_  F )  /\  A  C_  dom  G )  ->  ( F  |`  A )  =  ( G  |`  A )
)
653impa 1196 1  |-  ( ( Fun  F  /\  G  C_  F  /\  A  C_  dom  G )  ->  ( F  |`  A )  =  ( G  |`  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1372    C_ wss 3165   dom cdm 4674    |` cres 4676   Fun wfun 5264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-res 4686  df-fun 5272
This theorem is referenced by:  tfrlem9  6404  tfrlemiubacc  6415  tfr1onlemubacc  6431  tfrcllemubacc  6444
  Copyright terms: Public domain W3C validator