ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fun2ssres Unicode version

Theorem fun2ssres 5361
Description: Equality of restrictions of a function and a subclass. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
fun2ssres  |-  ( ( Fun  F  /\  G  C_  F  /\  A  C_  dom  G )  ->  ( F  |`  A )  =  ( G  |`  A ) )

Proof of Theorem fun2ssres
StepHypRef Expression
1 resabs1 5034 . . . 4  |-  ( A 
C_  dom  G  ->  ( ( F  |`  dom  G
)  |`  A )  =  ( F  |`  A ) )
21eqcomd 2235 . . 3  |-  ( A 
C_  dom  G  ->  ( F  |`  A )  =  ( ( F  |`  dom  G )  |`  A ) )
3 funssres 5360 . . . 4  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( F  |`  dom  G )  =  G )
43reseq1d 5004 . . 3  |-  ( ( Fun  F  /\  G  C_  F )  ->  (
( F  |`  dom  G
)  |`  A )  =  ( G  |`  A ) )
52, 4sylan9eqr 2284 . 2  |-  ( ( ( Fun  F  /\  G  C_  F )  /\  A  C_  dom  G )  ->  ( F  |`  A )  =  ( G  |`  A )
)
653impa 1218 1  |-  ( ( Fun  F  /\  G  C_  F  /\  A  C_  dom  G )  ->  ( F  |`  A )  =  ( G  |`  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    C_ wss 3197   dom cdm 4719    |` cres 4721   Fun wfun 5312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-res 4731  df-fun 5320
This theorem is referenced by:  tfrlem9  6465  tfrlemiubacc  6476  tfr1onlemubacc  6492  tfrcllemubacc  6505
  Copyright terms: Public domain W3C validator