ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fun2ssres Unicode version

Theorem fun2ssres 5231
Description: Equality of restrictions of a function and a subclass. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
fun2ssres  |-  ( ( Fun  F  /\  G  C_  F  /\  A  C_  dom  G )  ->  ( F  |`  A )  =  ( G  |`  A ) )

Proof of Theorem fun2ssres
StepHypRef Expression
1 resabs1 4913 . . . 4  |-  ( A 
C_  dom  G  ->  ( ( F  |`  dom  G
)  |`  A )  =  ( F  |`  A ) )
21eqcomd 2171 . . 3  |-  ( A 
C_  dom  G  ->  ( F  |`  A )  =  ( ( F  |`  dom  G )  |`  A ) )
3 funssres 5230 . . . 4  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( F  |`  dom  G )  =  G )
43reseq1d 4883 . . 3  |-  ( ( Fun  F  /\  G  C_  F )  ->  (
( F  |`  dom  G
)  |`  A )  =  ( G  |`  A ) )
52, 4sylan9eqr 2221 . 2  |-  ( ( ( Fun  F  /\  G  C_  F )  /\  A  C_  dom  G )  ->  ( F  |`  A )  =  ( G  |`  A )
)
653impa 1184 1  |-  ( ( Fun  F  /\  G  C_  F  /\  A  C_  dom  G )  ->  ( F  |`  A )  =  ( G  |`  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 968    = wceq 1343    C_ wss 3116   dom cdm 4604    |` cres 4606   Fun wfun 5182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-res 4616  df-fun 5190
This theorem is referenced by:  tfrlem9  6287  tfrlemiubacc  6298  tfr1onlemubacc  6314  tfrcllemubacc  6327
  Copyright terms: Public domain W3C validator