ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fun2ssres Unicode version

Theorem fun2ssres 5297
Description: Equality of restrictions of a function and a subclass. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
fun2ssres  |-  ( ( Fun  F  /\  G  C_  F  /\  A  C_  dom  G )  ->  ( F  |`  A )  =  ( G  |`  A ) )

Proof of Theorem fun2ssres
StepHypRef Expression
1 resabs1 4971 . . . 4  |-  ( A 
C_  dom  G  ->  ( ( F  |`  dom  G
)  |`  A )  =  ( F  |`  A ) )
21eqcomd 2199 . . 3  |-  ( A 
C_  dom  G  ->  ( F  |`  A )  =  ( ( F  |`  dom  G )  |`  A ) )
3 funssres 5296 . . . 4  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( F  |`  dom  G )  =  G )
43reseq1d 4941 . . 3  |-  ( ( Fun  F  /\  G  C_  F )  ->  (
( F  |`  dom  G
)  |`  A )  =  ( G  |`  A ) )
52, 4sylan9eqr 2248 . 2  |-  ( ( ( Fun  F  /\  G  C_  F )  /\  A  C_  dom  G )  ->  ( F  |`  A )  =  ( G  |`  A )
)
653impa 1196 1  |-  ( ( Fun  F  /\  G  C_  F  /\  A  C_  dom  G )  ->  ( F  |`  A )  =  ( G  |`  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    C_ wss 3153   dom cdm 4659    |` cres 4661   Fun wfun 5248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-res 4671  df-fun 5256
This theorem is referenced by:  tfrlem9  6372  tfrlemiubacc  6383  tfr1onlemubacc  6399  tfrcllemubacc  6412
  Copyright terms: Public domain W3C validator