ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fun2ssres GIF version

Theorem fun2ssres 5271
Description: Equality of restrictions of a function and a subclass. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
fun2ssres ((Fun 𝐹𝐺𝐹𝐴 ⊆ dom 𝐺) → (𝐹𝐴) = (𝐺𝐴))

Proof of Theorem fun2ssres
StepHypRef Expression
1 resabs1 4948 . . . 4 (𝐴 ⊆ dom 𝐺 → ((𝐹 ↾ dom 𝐺) ↾ 𝐴) = (𝐹𝐴))
21eqcomd 2193 . . 3 (𝐴 ⊆ dom 𝐺 → (𝐹𝐴) = ((𝐹 ↾ dom 𝐺) ↾ 𝐴))
3 funssres 5270 . . . 4 ((Fun 𝐹𝐺𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺)
43reseq1d 4918 . . 3 ((Fun 𝐹𝐺𝐹) → ((𝐹 ↾ dom 𝐺) ↾ 𝐴) = (𝐺𝐴))
52, 4sylan9eqr 2242 . 2 (((Fun 𝐹𝐺𝐹) ∧ 𝐴 ⊆ dom 𝐺) → (𝐹𝐴) = (𝐺𝐴))
653impa 1195 1 ((Fun 𝐹𝐺𝐹𝐴 ⊆ dom 𝐺) → (𝐹𝐴) = (𝐺𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 979   = wceq 1363  wss 3141  dom cdm 4638  cres 4640  Fun wfun 5222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-br 4016  df-opab 4077  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-res 4650  df-fun 5230
This theorem is referenced by:  tfrlem9  6334  tfrlemiubacc  6345  tfr1onlemubacc  6361  tfrcllemubacc  6374
  Copyright terms: Public domain W3C validator