Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fun2ssres | GIF version |
Description: Equality of restrictions of a function and a subclass. (Contributed by NM, 16-Aug-1994.) |
Ref | Expression |
---|---|
fun2ssres | ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹 ∧ 𝐴 ⊆ dom 𝐺) → (𝐹 ↾ 𝐴) = (𝐺 ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resabs1 4920 | . . . 4 ⊢ (𝐴 ⊆ dom 𝐺 → ((𝐹 ↾ dom 𝐺) ↾ 𝐴) = (𝐹 ↾ 𝐴)) | |
2 | 1 | eqcomd 2176 | . . 3 ⊢ (𝐴 ⊆ dom 𝐺 → (𝐹 ↾ 𝐴) = ((𝐹 ↾ dom 𝐺) ↾ 𝐴)) |
3 | funssres 5240 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺) | |
4 | 3 | reseq1d 4890 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) → ((𝐹 ↾ dom 𝐺) ↾ 𝐴) = (𝐺 ↾ 𝐴)) |
5 | 2, 4 | sylan9eqr 2225 | . 2 ⊢ (((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) ∧ 𝐴 ⊆ dom 𝐺) → (𝐹 ↾ 𝐴) = (𝐺 ↾ 𝐴)) |
6 | 5 | 3impa 1189 | 1 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹 ∧ 𝐴 ⊆ dom 𝐺) → (𝐹 ↾ 𝐴) = (𝐺 ↾ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 973 = wceq 1348 ⊆ wss 3121 dom cdm 4611 ↾ cres 4613 Fun wfun 5192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-res 4623 df-fun 5200 |
This theorem is referenced by: tfrlem9 6298 tfrlemiubacc 6309 tfr1onlemubacc 6325 tfrcllemubacc 6338 |
Copyright terms: Public domain | W3C validator |