ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcnv Unicode version

Theorem funcnv 5249
Description: The converse of a class is a function iff the class is single-rooted, which means that for any  y in the range of  A there is at most one  x such that  x A
y. Definition of single-rooted in [Enderton] p. 43. See funcnv2 5248 for a simpler version. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
funcnv  |-  ( Fun  `' A  <->  A. y  e.  ran  A E* x  x A y )
Distinct variable group:    x, y, A

Proof of Theorem funcnv
StepHypRef Expression
1 vex 2729 . . . . . . 7  |-  x  e. 
_V
2 vex 2729 . . . . . . 7  |-  y  e. 
_V
31, 2brelrn 4837 . . . . . 6  |-  ( x A y  ->  y  e.  ran  A )
43pm4.71ri 390 . . . . 5  |-  ( x A y  <->  ( y  e.  ran  A  /\  x A y ) )
54mobii 2051 . . . 4  |-  ( E* x  x A y  <->  E* x ( y  e. 
ran  A  /\  x A y ) )
6 moanimv 2089 . . . 4  |-  ( E* x ( y  e. 
ran  A  /\  x A y )  <->  ( y  e.  ran  A  ->  E* x  x A y ) )
75, 6bitri 183 . . 3  |-  ( E* x  x A y  <-> 
( y  e.  ran  A  ->  E* x  x A y ) )
87albii 1458 . 2  |-  ( A. y E* x  x A y  <->  A. y ( y  e.  ran  A  ->  E* x  x A
y ) )
9 funcnv2 5248 . 2  |-  ( Fun  `' A  <->  A. y E* x  x A y )
10 df-ral 2449 . 2  |-  ( A. y  e.  ran  A E* x  x A y  <->  A. y
( y  e.  ran  A  ->  E* x  x A y ) )
118, 9, 103bitr4i 211 1  |-  ( Fun  `' A  <->  A. y  e.  ran  A E* x  x A y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1341   E*wmo 2015    e. wcel 2136   A.wral 2444   class class class wbr 3982   `'ccnv 4603   ran crn 4605   Fun wfun 5182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-fun 5190
This theorem is referenced by:  funcnv3  5250  fncnv  5254
  Copyright terms: Public domain W3C validator