ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcnv Unicode version

Theorem funcnv 5315
Description: The converse of a class is a function iff the class is single-rooted, which means that for any  y in the range of  A there is at most one  x such that  x A
y. Definition of single-rooted in [Enderton] p. 43. See funcnv2 5314 for a simpler version. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
funcnv  |-  ( Fun  `' A  <->  A. y  e.  ran  A E* x  x A y )
Distinct variable group:    x, y, A

Proof of Theorem funcnv
StepHypRef Expression
1 vex 2763 . . . . . . 7  |-  x  e. 
_V
2 vex 2763 . . . . . . 7  |-  y  e. 
_V
31, 2brelrn 4895 . . . . . 6  |-  ( x A y  ->  y  e.  ran  A )
43pm4.71ri 392 . . . . 5  |-  ( x A y  <->  ( y  e.  ran  A  /\  x A y ) )
54mobii 2079 . . . 4  |-  ( E* x  x A y  <->  E* x ( y  e. 
ran  A  /\  x A y ) )
6 moanimv 2117 . . . 4  |-  ( E* x ( y  e. 
ran  A  /\  x A y )  <->  ( y  e.  ran  A  ->  E* x  x A y ) )
75, 6bitri 184 . . 3  |-  ( E* x  x A y  <-> 
( y  e.  ran  A  ->  E* x  x A y ) )
87albii 1481 . 2  |-  ( A. y E* x  x A y  <->  A. y ( y  e.  ran  A  ->  E* x  x A
y ) )
9 funcnv2 5314 . 2  |-  ( Fun  `' A  <->  A. y E* x  x A y )
10 df-ral 2477 . 2  |-  ( A. y  e.  ran  A E* x  x A y  <->  A. y
( y  e.  ran  A  ->  E* x  x A y ) )
118, 9, 103bitr4i 212 1  |-  ( Fun  `' A  <->  A. y  e.  ran  A E* x  x A y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362   E*wmo 2043    e. wcel 2164   A.wral 2472   class class class wbr 4029   `'ccnv 4658   ran crn 4660   Fun wfun 5248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-fun 5256
This theorem is referenced by:  funcnv3  5316  fncnv  5320
  Copyright terms: Public domain W3C validator