Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funcnv | GIF version |
Description: The converse of a class is a function iff the class is single-rooted, which means that for any 𝑦 in the range of 𝐴 there is at most one 𝑥 such that 𝑥𝐴𝑦. Definition of single-rooted in [Enderton] p. 43. See funcnv2 5268 for a simpler version. (Contributed by NM, 13-Aug-2004.) |
Ref | Expression |
---|---|
funcnv | ⊢ (Fun ◡𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃*𝑥 𝑥𝐴𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2738 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
2 | vex 2738 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | brelrn 4853 | . . . . . 6 ⊢ (𝑥𝐴𝑦 → 𝑦 ∈ ran 𝐴) |
4 | 3 | pm4.71ri 392 | . . . . 5 ⊢ (𝑥𝐴𝑦 ↔ (𝑦 ∈ ran 𝐴 ∧ 𝑥𝐴𝑦)) |
5 | 4 | mobii 2061 | . . . 4 ⊢ (∃*𝑥 𝑥𝐴𝑦 ↔ ∃*𝑥(𝑦 ∈ ran 𝐴 ∧ 𝑥𝐴𝑦)) |
6 | moanimv 2099 | . . . 4 ⊢ (∃*𝑥(𝑦 ∈ ran 𝐴 ∧ 𝑥𝐴𝑦) ↔ (𝑦 ∈ ran 𝐴 → ∃*𝑥 𝑥𝐴𝑦)) | |
7 | 5, 6 | bitri 184 | . . 3 ⊢ (∃*𝑥 𝑥𝐴𝑦 ↔ (𝑦 ∈ ran 𝐴 → ∃*𝑥 𝑥𝐴𝑦)) |
8 | 7 | albii 1468 | . 2 ⊢ (∀𝑦∃*𝑥 𝑥𝐴𝑦 ↔ ∀𝑦(𝑦 ∈ ran 𝐴 → ∃*𝑥 𝑥𝐴𝑦)) |
9 | funcnv2 5268 | . 2 ⊢ (Fun ◡𝐴 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦) | |
10 | df-ral 2458 | . 2 ⊢ (∀𝑦 ∈ ran 𝐴∃*𝑥 𝑥𝐴𝑦 ↔ ∀𝑦(𝑦 ∈ ran 𝐴 → ∃*𝑥 𝑥𝐴𝑦)) | |
11 | 8, 9, 10 | 3bitr4i 212 | 1 ⊢ (Fun ◡𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃*𝑥 𝑥𝐴𝑦) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1351 ∃*wmo 2025 ∈ wcel 2146 ∀wral 2453 class class class wbr 3998 ◡ccnv 4619 ran crn 4621 Fun wfun 5202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-fun 5210 |
This theorem is referenced by: funcnv3 5270 fncnv 5274 |
Copyright terms: Public domain | W3C validator |