ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funeqd GIF version

Theorem funeqd 5312
Description: Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.)
Hypothesis
Ref Expression
funeqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
funeqd (𝜑 → (Fun 𝐴 ↔ Fun 𝐵))

Proof of Theorem funeqd
StepHypRef Expression
1 funeqd.1 . 2 (𝜑𝐴 = 𝐵)
2 funeq 5310 . 2 (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵))
31, 2syl 14 1 (𝜑 → (Fun 𝐴 ↔ Fun 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  Fun wfun 5284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-in 3180  df-ss 3187  df-br 4060  df-opab 4122  df-rel 4700  df-cnv 4701  df-co 4702  df-fun 5292
This theorem is referenced by:  funopg  5324  funsng  5339  funcnvuni  5362  f1eq1  5498  funopsn  5785  frecuzrdgtclt  10603  fundm2domnop0  11027  shftfn  11250  ennnfonelemfun  12903  ennnfonelemf1  12904  isstruct2im  12957  isstruct2r  12958  structfung  12964  setsfun  12982  setsfun0  12983  strslfv3  12993  funmptd  15939
  Copyright terms: Public domain W3C validator