| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funeqd | GIF version | ||
| Description: Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.) |
| Ref | Expression |
|---|---|
| funeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| funeqd | ⊢ (𝜑 → (Fun 𝐴 ↔ Fun 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | funeq 5310 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (Fun 𝐴 ↔ Fun 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 Fun wfun 5284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-in 3180 df-ss 3187 df-br 4060 df-opab 4122 df-rel 4700 df-cnv 4701 df-co 4702 df-fun 5292 |
| This theorem is referenced by: funopg 5324 funsng 5339 funcnvuni 5362 f1eq1 5498 funopsn 5785 frecuzrdgtclt 10603 fundm2domnop0 11027 shftfn 11250 ennnfonelemfun 12903 ennnfonelemf1 12904 isstruct2im 12957 isstruct2r 12958 structfung 12964 setsfun 12982 setsfun0 12983 strslfv3 12993 funmptd 15939 |
| Copyright terms: Public domain | W3C validator |