| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funeu | GIF version | ||
| Description: There is exactly one value of a function. (Contributed by NM, 22-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| funeu | ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → ∃!𝑦 𝐴𝐹𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funrel 5285 | . . . 4 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 2 | releldm 4911 | . . . 4 ⊢ ((Rel 𝐹 ∧ 𝐴𝐹𝐵) → 𝐴 ∈ dom 𝐹) | |
| 3 | 1, 2 | sylan 283 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → 𝐴 ∈ dom 𝐹) |
| 4 | eldmg 4871 | . . . 4 ⊢ (𝐴 ∈ dom 𝐹 → (𝐴 ∈ dom 𝐹 ↔ ∃𝑦 𝐴𝐹𝑦)) | |
| 5 | 4 | ibi 176 | . . 3 ⊢ (𝐴 ∈ dom 𝐹 → ∃𝑦 𝐴𝐹𝑦) |
| 6 | 3, 5 | syl 14 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → ∃𝑦 𝐴𝐹𝑦) |
| 7 | funmo 5283 | . . . 4 ⊢ (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦) | |
| 8 | 7 | adantr 276 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → ∃*𝑦 𝐴𝐹𝑦) |
| 9 | df-mo 2057 | . . 3 ⊢ (∃*𝑦 𝐴𝐹𝑦 ↔ (∃𝑦 𝐴𝐹𝑦 → ∃!𝑦 𝐴𝐹𝑦)) | |
| 10 | 8, 9 | sylib 122 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (∃𝑦 𝐴𝐹𝑦 → ∃!𝑦 𝐴𝐹𝑦)) |
| 11 | 6, 10 | mpd 13 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → ∃!𝑦 𝐴𝐹𝑦) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∃wex 1514 ∃!weu 2053 ∃*wmo 2054 ∈ wcel 2175 class class class wbr 4043 dom cdm 4673 Rel wrel 4678 Fun wfun 5262 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-fun 5270 |
| This theorem is referenced by: funeu2 5294 funbrfv 5611 |
| Copyright terms: Public domain | W3C validator |