Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funeu | GIF version |
Description: There is exactly one value of a function. (Contributed by NM, 22-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
funeu | ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → ∃!𝑦 𝐴𝐹𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funrel 5215 | . . . 4 ⊢ (Fun 𝐹 → Rel 𝐹) | |
2 | releldm 4846 | . . . 4 ⊢ ((Rel 𝐹 ∧ 𝐴𝐹𝐵) → 𝐴 ∈ dom 𝐹) | |
3 | 1, 2 | sylan 281 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → 𝐴 ∈ dom 𝐹) |
4 | eldmg 4806 | . . . 4 ⊢ (𝐴 ∈ dom 𝐹 → (𝐴 ∈ dom 𝐹 ↔ ∃𝑦 𝐴𝐹𝑦)) | |
5 | 4 | ibi 175 | . . 3 ⊢ (𝐴 ∈ dom 𝐹 → ∃𝑦 𝐴𝐹𝑦) |
6 | 3, 5 | syl 14 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → ∃𝑦 𝐴𝐹𝑦) |
7 | funmo 5213 | . . . 4 ⊢ (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦) | |
8 | 7 | adantr 274 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → ∃*𝑦 𝐴𝐹𝑦) |
9 | df-mo 2023 | . . 3 ⊢ (∃*𝑦 𝐴𝐹𝑦 ↔ (∃𝑦 𝐴𝐹𝑦 → ∃!𝑦 𝐴𝐹𝑦)) | |
10 | 8, 9 | sylib 121 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (∃𝑦 𝐴𝐹𝑦 → ∃!𝑦 𝐴𝐹𝑦)) |
11 | 6, 10 | mpd 13 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → ∃!𝑦 𝐴𝐹𝑦) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∃wex 1485 ∃!weu 2019 ∃*wmo 2020 ∈ wcel 2141 class class class wbr 3989 dom cdm 4611 Rel wrel 4616 Fun wfun 5192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-fun 5200 |
This theorem is referenced by: funeu2 5224 funbrfv 5535 |
Copyright terms: Public domain | W3C validator |