Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funeu | GIF version |
Description: There is exactly one value of a function. (Contributed by NM, 22-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
funeu | ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → ∃!𝑦 𝐴𝐹𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funrel 5205 | . . . 4 ⊢ (Fun 𝐹 → Rel 𝐹) | |
2 | releldm 4839 | . . . 4 ⊢ ((Rel 𝐹 ∧ 𝐴𝐹𝐵) → 𝐴 ∈ dom 𝐹) | |
3 | 1, 2 | sylan 281 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → 𝐴 ∈ dom 𝐹) |
4 | eldmg 4799 | . . . 4 ⊢ (𝐴 ∈ dom 𝐹 → (𝐴 ∈ dom 𝐹 ↔ ∃𝑦 𝐴𝐹𝑦)) | |
5 | 4 | ibi 175 | . . 3 ⊢ (𝐴 ∈ dom 𝐹 → ∃𝑦 𝐴𝐹𝑦) |
6 | 3, 5 | syl 14 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → ∃𝑦 𝐴𝐹𝑦) |
7 | funmo 5203 | . . . 4 ⊢ (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦) | |
8 | 7 | adantr 274 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → ∃*𝑦 𝐴𝐹𝑦) |
9 | df-mo 2018 | . . 3 ⊢ (∃*𝑦 𝐴𝐹𝑦 ↔ (∃𝑦 𝐴𝐹𝑦 → ∃!𝑦 𝐴𝐹𝑦)) | |
10 | 8, 9 | sylib 121 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (∃𝑦 𝐴𝐹𝑦 → ∃!𝑦 𝐴𝐹𝑦)) |
11 | 6, 10 | mpd 13 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → ∃!𝑦 𝐴𝐹𝑦) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∃wex 1480 ∃!weu 2014 ∃*wmo 2015 ∈ wcel 2136 class class class wbr 3982 dom cdm 4604 Rel wrel 4609 Fun wfun 5182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-fun 5190 |
This theorem is referenced by: funeu2 5214 funbrfv 5525 |
Copyright terms: Public domain | W3C validator |