ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimacnv GIF version

Theorem funimacnv 5294
Description: The image of the preimage of a function. (Contributed by NM, 25-May-2004.)
Assertion
Ref Expression
funimacnv (Fun 𝐹 → (𝐹 “ (𝐹𝐴)) = (𝐴 ∩ ran 𝐹))

Proof of Theorem funimacnv
StepHypRef Expression
1 df-ima 4641 . . 3 (𝐹 “ (𝐹𝐴)) = ran (𝐹 ↾ (𝐹𝐴))
2 funcnvres2 5293 . . . 4 (Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))
32rneqd 4858 . . 3 (Fun 𝐹 → ran (𝐹𝐴) = ran (𝐹 ↾ (𝐹𝐴)))
41, 3eqtr4id 2229 . 2 (Fun 𝐹 → (𝐹 “ (𝐹𝐴)) = ran (𝐹𝐴))
5 df-rn 4639 . . . 4 ran 𝐹 = dom 𝐹
65ineq2i 3335 . . 3 (𝐴 ∩ ran 𝐹) = (𝐴 ∩ dom 𝐹)
7 dmres 4930 . . 3 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
8 dfdm4 4821 . . 3 dom (𝐹𝐴) = ran (𝐹𝐴)
96, 7, 83eqtr2ri 2205 . 2 ran (𝐹𝐴) = (𝐴 ∩ ran 𝐹)
104, 9eqtrdi 2226 1 (Fun 𝐹 → (𝐹 “ (𝐹𝐴)) = (𝐴 ∩ ran 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  cin 3130  ccnv 4627  dom cdm 4628  ran crn 4629  cres 4630  cima 4631  Fun wfun 5212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-fun 5220
This theorem is referenced by:  funimass1  5295  funimass2  5296
  Copyright terms: Public domain W3C validator