![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funimacnv | GIF version |
Description: The image of the preimage of a function. (Contributed by NM, 25-May-2004.) |
Ref | Expression |
---|---|
funimacnv | ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ 𝐴)) = (𝐴 ∩ ran 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 4673 | . . 3 ⊢ (𝐹 “ (◡𝐹 “ 𝐴)) = ran (𝐹 ↾ (◡𝐹 “ 𝐴)) | |
2 | funcnvres2 5330 | . . . 4 ⊢ (Fun 𝐹 → ◡(◡𝐹 ↾ 𝐴) = (𝐹 ↾ (◡𝐹 “ 𝐴))) | |
3 | 2 | rneqd 4892 | . . 3 ⊢ (Fun 𝐹 → ran ◡(◡𝐹 ↾ 𝐴) = ran (𝐹 ↾ (◡𝐹 “ 𝐴))) |
4 | 1, 3 | eqtr4id 2245 | . 2 ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ 𝐴)) = ran ◡(◡𝐹 ↾ 𝐴)) |
5 | df-rn 4671 | . . . 4 ⊢ ran 𝐹 = dom ◡𝐹 | |
6 | 5 | ineq2i 3358 | . . 3 ⊢ (𝐴 ∩ ran 𝐹) = (𝐴 ∩ dom ◡𝐹) |
7 | dmres 4964 | . . 3 ⊢ dom (◡𝐹 ↾ 𝐴) = (𝐴 ∩ dom ◡𝐹) | |
8 | dfdm4 4855 | . . 3 ⊢ dom (◡𝐹 ↾ 𝐴) = ran ◡(◡𝐹 ↾ 𝐴) | |
9 | 6, 7, 8 | 3eqtr2ri 2221 | . 2 ⊢ ran ◡(◡𝐹 ↾ 𝐴) = (𝐴 ∩ ran 𝐹) |
10 | 4, 9 | eqtrdi 2242 | 1 ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ 𝐴)) = (𝐴 ∩ ran 𝐹)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∩ cin 3153 ◡ccnv 4659 dom cdm 4660 ran crn 4661 ↾ cres 4662 “ cima 4663 Fun wfun 5249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-fun 5257 |
This theorem is referenced by: funimass1 5332 funimass2 5333 |
Copyright terms: Public domain | W3C validator |