ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funop Unicode version

Theorem funop 5776
Description: An ordered pair is a function iff it is a singleton of an ordered pair. (Contributed by AV, 20-Sep-2020.) A function is a class of ordered pairs, so the fact that an ordered pair may sometimes be itself a function is an "accident" depending on the specific encoding of ordered pairs as classes (in set.mm, the Kuratowski encoding). A more meaningful statement is funsng 5329, as relsnopg 4787 is to relop 4836. (New usage is discouraged.)
Hypotheses
Ref Expression
funopsn.x  |-  X  e. 
_V
funopsn.y  |-  Y  e. 
_V
Assertion
Ref Expression
funop  |-  ( Fun 
<. X ,  Y >.  <->  E. a ( X  =  { a }  /\  <. X ,  Y >.  =  { <. a ,  a
>. } ) )
Distinct variable groups:    X, a    Y, a

Proof of Theorem funop
StepHypRef Expression
1 eqid 2206 . . 3  |-  <. X ,  Y >.  =  <. X ,  Y >.
2 funopsn.x . . . 4  |-  X  e. 
_V
3 funopsn.y . . . 4  |-  Y  e. 
_V
42, 3funopsn 5775 . . 3  |-  ( ( Fun  <. X ,  Y >.  /\  <. X ,  Y >.  =  <. X ,  Y >. )  ->  E. a
( X  =  {
a }  /\  <. X ,  Y >.  =  { <. a ,  a >. } ) )
51, 4mpan2 425 . 2  |-  ( Fun 
<. X ,  Y >.  ->  E. a ( X  =  { a }  /\  <. X ,  Y >.  =  { <. a ,  a
>. } ) )
6 vex 2776 . . . . . 6  |-  a  e. 
_V
76, 6funsn 5331 . . . . 5  |-  Fun  { <. a ,  a >. }
8 funeq 5300 . . . . 5  |-  ( <. X ,  Y >.  =  { <. a ,  a
>. }  ->  ( Fun  <. X ,  Y >.  <->  Fun  {
<. a ,  a >. } ) )
97, 8mpbiri 168 . . . 4  |-  ( <. X ,  Y >.  =  { <. a ,  a
>. }  ->  Fun  <. X ,  Y >. )
109adantl 277 . . 3  |-  ( ( X  =  { a }  /\  <. X ,  Y >.  =  { <. a ,  a >. } )  ->  Fun  <. X ,  Y >. )
1110exlimiv 1622 . 2  |-  ( E. a ( X  =  { a }  /\  <. X ,  Y >.  =  { <. a ,  a
>. } )  ->  Fun  <. X ,  Y >. )
125, 11impbii 126 1  |-  ( Fun 
<. X ,  Y >.  <->  E. a ( X  =  { a }  /\  <. X ,  Y >.  =  { <. a ,  a
>. } ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1516    e. wcel 2177   _Vcvv 2773   {csn 3638   <.cop 3641   Fun wfun 5274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-fun 5282
This theorem is referenced by:  funopdmsn  5777
  Copyright terms: Public domain W3C validator