| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funop | Unicode version | ||
| Description: An ordered pair is a function iff it is a singleton of an ordered pair. (Contributed by AV, 20-Sep-2020.) A function is a class of ordered pairs, so the fact that an ordered pair may sometimes be itself a function is an "accident" depending on the specific encoding of ordered pairs as classes (in set.mm, the Kuratowski encoding). A more meaningful statement is funsng 5319, as relsnopg 4778 is to relop 4827. (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| funopsn.x |
|
| funopsn.y |
|
| Ref | Expression |
|---|---|
| funop |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2204 |
. . 3
| |
| 2 | funopsn.x |
. . . 4
| |
| 3 | funopsn.y |
. . . 4
| |
| 4 | 2, 3 | funopsn 5761 |
. . 3
|
| 5 | 1, 4 | mpan2 425 |
. 2
|
| 6 | vex 2774 |
. . . . . 6
| |
| 7 | 6, 6 | funsn 5321 |
. . . . 5
|
| 8 | funeq 5290 |
. . . . 5
| |
| 9 | 7, 8 | mpbiri 168 |
. . . 4
|
| 10 | 9 | adantl 277 |
. . 3
|
| 11 | 10 | exlimiv 1620 |
. 2
|
| 12 | 5, 11 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-fun 5272 |
| This theorem is referenced by: funopdmsn 5763 |
| Copyright terms: Public domain | W3C validator |