ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funop Unicode version

Theorem funop 5762
Description: An ordered pair is a function iff it is a singleton of an ordered pair. (Contributed by AV, 20-Sep-2020.) A function is a class of ordered pairs, so the fact that an ordered pair may sometimes be itself a function is an "accident" depending on the specific encoding of ordered pairs as classes (in set.mm, the Kuratowski encoding). A more meaningful statement is funsng 5319, as relsnopg 4778 is to relop 4827. (New usage is discouraged.)
Hypotheses
Ref Expression
funopsn.x  |-  X  e. 
_V
funopsn.y  |-  Y  e. 
_V
Assertion
Ref Expression
funop  |-  ( Fun 
<. X ,  Y >.  <->  E. a ( X  =  { a }  /\  <. X ,  Y >.  =  { <. a ,  a
>. } ) )
Distinct variable groups:    X, a    Y, a

Proof of Theorem funop
StepHypRef Expression
1 eqid 2204 . . 3  |-  <. X ,  Y >.  =  <. X ,  Y >.
2 funopsn.x . . . 4  |-  X  e. 
_V
3 funopsn.y . . . 4  |-  Y  e. 
_V
42, 3funopsn 5761 . . 3  |-  ( ( Fun  <. X ,  Y >.  /\  <. X ,  Y >.  =  <. X ,  Y >. )  ->  E. a
( X  =  {
a }  /\  <. X ,  Y >.  =  { <. a ,  a >. } ) )
51, 4mpan2 425 . 2  |-  ( Fun 
<. X ,  Y >.  ->  E. a ( X  =  { a }  /\  <. X ,  Y >.  =  { <. a ,  a
>. } ) )
6 vex 2774 . . . . . 6  |-  a  e. 
_V
76, 6funsn 5321 . . . . 5  |-  Fun  { <. a ,  a >. }
8 funeq 5290 . . . . 5  |-  ( <. X ,  Y >.  =  { <. a ,  a
>. }  ->  ( Fun  <. X ,  Y >.  <->  Fun  {
<. a ,  a >. } ) )
97, 8mpbiri 168 . . . 4  |-  ( <. X ,  Y >.  =  { <. a ,  a
>. }  ->  Fun  <. X ,  Y >. )
109adantl 277 . . 3  |-  ( ( X  =  { a }  /\  <. X ,  Y >.  =  { <. a ,  a >. } )  ->  Fun  <. X ,  Y >. )
1110exlimiv 1620 . 2  |-  ( E. a ( X  =  { a }  /\  <. X ,  Y >.  =  { <. a ,  a
>. } )  ->  Fun  <. X ,  Y >. )
125, 11impbii 126 1  |-  ( Fun 
<. X ,  Y >.  <->  E. a ( X  =  { a }  /\  <. X ,  Y >.  =  { <. a ,  a
>. } ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1372   E.wex 1514    e. wcel 2175   _Vcvv 2771   {csn 3632   <.cop 3635   Fun wfun 5264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-fun 5272
This theorem is referenced by:  funopdmsn  5763
  Copyright terms: Public domain W3C validator