| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funopdmsn | Unicode version | ||
| Description: The domain of a function which is an ordered pair is a singleton. (Contributed by AV, 15-Nov-2021.) (Avoid depending on this detail.) |
| Ref | Expression |
|---|---|
| funopdmsn.g |
|
| funopdmsn.x |
|
| funopdmsn.y |
|
| Ref | Expression |
|---|---|
| funopdmsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funopdmsn.g |
. . . . 5
| |
| 2 | 1 | funeqi 5301 |
. . . 4
|
| 3 | funopdmsn.x |
. . . . . 6
| |
| 4 | 3 | elexi 2786 |
. . . . 5
|
| 5 | funopdmsn.y |
. . . . . 6
| |
| 6 | 5 | elexi 2786 |
. . . . 5
|
| 7 | 4, 6 | funop 5776 |
. . . 4
|
| 8 | 2, 7 | bitri 184 |
. . 3
|
| 9 | 1 | eqcomi 2210 |
. . . . . . 7
|
| 10 | 9 | eqeq1i 2214 |
. . . . . 6
|
| 11 | dmeq 4887 |
. . . . . . . 8
| |
| 12 | vex 2776 |
. . . . . . . . 9
| |
| 13 | 12 | dmsnop 5165 |
. . . . . . . 8
|
| 14 | 11, 13 | eqtrdi 2255 |
. . . . . . 7
|
| 15 | eleq2 2270 |
. . . . . . . . 9
| |
| 16 | eleq2 2270 |
. . . . . . . . 9
| |
| 17 | 15, 16 | anbi12d 473 |
. . . . . . . 8
|
| 18 | elsni 3656 |
. . . . . . . . 9
| |
| 19 | elsni 3656 |
. . . . . . . . 9
| |
| 20 | eqtr3 2226 |
. . . . . . . . 9
| |
| 21 | 18, 19, 20 | syl2an 289 |
. . . . . . . 8
|
| 22 | 17, 21 | biimtrdi 163 |
. . . . . . 7
|
| 23 | 14, 22 | syl 14 |
. . . . . 6
|
| 24 | 10, 23 | sylbi 121 |
. . . . 5
|
| 25 | 24 | adantl 277 |
. . . 4
|
| 26 | 25 | exlimiv 1622 |
. . 3
|
| 27 | 8, 26 | sylbi 121 |
. 2
|
| 28 | 27 | 3impib 1204 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-fun 5282 |
| This theorem is referenced by: fundm2domnop0 11012 |
| Copyright terms: Public domain | W3C validator |