ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funopdmsn Unicode version

Theorem funopdmsn 5777
Description: The domain of a function which is an ordered pair is a singleton. (Contributed by AV, 15-Nov-2021.) (Avoid depending on this detail.)
Hypotheses
Ref Expression
funopdmsn.g  |-  G  = 
<. X ,  Y >.
funopdmsn.x  |-  X  e.  V
funopdmsn.y  |-  Y  e.  W
Assertion
Ref Expression
funopdmsn  |-  ( ( Fun  G  /\  A  e.  dom  G  /\  B  e.  dom  G )  ->  A  =  B )

Proof of Theorem funopdmsn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 funopdmsn.g . . . . 5  |-  G  = 
<. X ,  Y >.
21funeqi 5301 . . . 4  |-  ( Fun 
G  <->  Fun  <. X ,  Y >. )
3 funopdmsn.x . . . . . 6  |-  X  e.  V
43elexi 2786 . . . . 5  |-  X  e. 
_V
5 funopdmsn.y . . . . . 6  |-  Y  e.  W
65elexi 2786 . . . . 5  |-  Y  e. 
_V
74, 6funop 5776 . . . 4  |-  ( Fun 
<. X ,  Y >.  <->  E. x ( X  =  { x }  /\  <. X ,  Y >.  =  { <. x ,  x >. } ) )
82, 7bitri 184 . . 3  |-  ( Fun 
G  <->  E. x ( X  =  { x }  /\  <. X ,  Y >.  =  { <. x ,  x >. } ) )
91eqcomi 2210 . . . . . . 7  |-  <. X ,  Y >.  =  G
109eqeq1i 2214 . . . . . 6  |-  ( <. X ,  Y >.  =  { <. x ,  x >. }  <->  G  =  { <. x ,  x >. } )
11 dmeq 4887 . . . . . . . 8  |-  ( G  =  { <. x ,  x >. }  ->  dom  G  =  dom  { <. x ,  x >. } )
12 vex 2776 . . . . . . . . 9  |-  x  e. 
_V
1312dmsnop 5165 . . . . . . . 8  |-  dom  { <. x ,  x >. }  =  { x }
1411, 13eqtrdi 2255 . . . . . . 7  |-  ( G  =  { <. x ,  x >. }  ->  dom  G  =  { x }
)
15 eleq2 2270 . . . . . . . . 9  |-  ( dom 
G  =  { x }  ->  ( A  e. 
dom  G  <->  A  e.  { x } ) )
16 eleq2 2270 . . . . . . . . 9  |-  ( dom 
G  =  { x }  ->  ( B  e. 
dom  G  <->  B  e.  { x } ) )
1715, 16anbi12d 473 . . . . . . . 8  |-  ( dom 
G  =  { x }  ->  ( ( A  e.  dom  G  /\  B  e.  dom  G )  <-> 
( A  e.  {
x }  /\  B  e.  { x } ) ) )
18 elsni 3656 . . . . . . . . 9  |-  ( A  e.  { x }  ->  A  =  x )
19 elsni 3656 . . . . . . . . 9  |-  ( B  e.  { x }  ->  B  =  x )
20 eqtr3 2226 . . . . . . . . 9  |-  ( ( A  =  x  /\  B  =  x )  ->  A  =  B )
2118, 19, 20syl2an 289 . . . . . . . 8  |-  ( ( A  e.  { x }  /\  B  e.  {
x } )  ->  A  =  B )
2217, 21biimtrdi 163 . . . . . . 7  |-  ( dom 
G  =  { x }  ->  ( ( A  e.  dom  G  /\  B  e.  dom  G )  ->  A  =  B ) )
2314, 22syl 14 . . . . . 6  |-  ( G  =  { <. x ,  x >. }  ->  (
( A  e.  dom  G  /\  B  e.  dom  G )  ->  A  =  B ) )
2410, 23sylbi 121 . . . . 5  |-  ( <. X ,  Y >.  =  { <. x ,  x >. }  ->  ( ( A  e.  dom  G  /\  B  e.  dom  G )  ->  A  =  B ) )
2524adantl 277 . . . 4  |-  ( ( X  =  { x }  /\  <. X ,  Y >.  =  { <. x ,  x >. } )  -> 
( ( A  e. 
dom  G  /\  B  e. 
dom  G )  ->  A  =  B )
)
2625exlimiv 1622 . . 3  |-  ( E. x ( X  =  { x }  /\  <. X ,  Y >.  =  { <. x ,  x >. } )  ->  (
( A  e.  dom  G  /\  B  e.  dom  G )  ->  A  =  B ) )
278, 26sylbi 121 . 2  |-  ( Fun 
G  ->  ( ( A  e.  dom  G  /\  B  e.  dom  G )  ->  A  =  B ) )
28273impib 1204 1  |-  ( ( Fun  G  /\  A  e.  dom  G  /\  B  e.  dom  G )  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373   E.wex 1516    e. wcel 2177   {csn 3638   <.cop 3641   dom cdm 4683   Fun wfun 5274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-fun 5282
This theorem is referenced by:  fundm2domnop0  11012
  Copyright terms: Public domain W3C validator