ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funopdmsn Unicode version

Theorem funopdmsn 5818
Description: The domain of a function which is an ordered pair is a singleton. (Contributed by AV, 15-Nov-2021.) (Avoid depending on this detail.)
Hypotheses
Ref Expression
funopdmsn.g  |-  G  = 
<. X ,  Y >.
funopdmsn.x  |-  X  e.  V
funopdmsn.y  |-  Y  e.  W
Assertion
Ref Expression
funopdmsn  |-  ( ( Fun  G  /\  A  e.  dom  G  /\  B  e.  dom  G )  ->  A  =  B )

Proof of Theorem funopdmsn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 funopdmsn.g . . . . 5  |-  G  = 
<. X ,  Y >.
21funeqi 5338 . . . 4  |-  ( Fun 
G  <->  Fun  <. X ,  Y >. )
3 funopdmsn.x . . . . . 6  |-  X  e.  V
43elexi 2812 . . . . 5  |-  X  e. 
_V
5 funopdmsn.y . . . . . 6  |-  Y  e.  W
65elexi 2812 . . . . 5  |-  Y  e. 
_V
74, 6funop 5817 . . . 4  |-  ( Fun 
<. X ,  Y >.  <->  E. x ( X  =  { x }  /\  <. X ,  Y >.  =  { <. x ,  x >. } ) )
82, 7bitri 184 . . 3  |-  ( Fun 
G  <->  E. x ( X  =  { x }  /\  <. X ,  Y >.  =  { <. x ,  x >. } ) )
91eqcomi 2233 . . . . . . 7  |-  <. X ,  Y >.  =  G
109eqeq1i 2237 . . . . . 6  |-  ( <. X ,  Y >.  =  { <. x ,  x >. }  <->  G  =  { <. x ,  x >. } )
11 dmeq 4922 . . . . . . . 8  |-  ( G  =  { <. x ,  x >. }  ->  dom  G  =  dom  { <. x ,  x >. } )
12 vex 2802 . . . . . . . . 9  |-  x  e. 
_V
1312dmsnop 5201 . . . . . . . 8  |-  dom  { <. x ,  x >. }  =  { x }
1411, 13eqtrdi 2278 . . . . . . 7  |-  ( G  =  { <. x ,  x >. }  ->  dom  G  =  { x }
)
15 eleq2 2293 . . . . . . . . 9  |-  ( dom 
G  =  { x }  ->  ( A  e. 
dom  G  <->  A  e.  { x } ) )
16 eleq2 2293 . . . . . . . . 9  |-  ( dom 
G  =  { x }  ->  ( B  e. 
dom  G  <->  B  e.  { x } ) )
1715, 16anbi12d 473 . . . . . . . 8  |-  ( dom 
G  =  { x }  ->  ( ( A  e.  dom  G  /\  B  e.  dom  G )  <-> 
( A  e.  {
x }  /\  B  e.  { x } ) ) )
18 elsni 3684 . . . . . . . . 9  |-  ( A  e.  { x }  ->  A  =  x )
19 elsni 3684 . . . . . . . . 9  |-  ( B  e.  { x }  ->  B  =  x )
20 eqtr3 2249 . . . . . . . . 9  |-  ( ( A  =  x  /\  B  =  x )  ->  A  =  B )
2118, 19, 20syl2an 289 . . . . . . . 8  |-  ( ( A  e.  { x }  /\  B  e.  {
x } )  ->  A  =  B )
2217, 21biimtrdi 163 . . . . . . 7  |-  ( dom 
G  =  { x }  ->  ( ( A  e.  dom  G  /\  B  e.  dom  G )  ->  A  =  B ) )
2314, 22syl 14 . . . . . 6  |-  ( G  =  { <. x ,  x >. }  ->  (
( A  e.  dom  G  /\  B  e.  dom  G )  ->  A  =  B ) )
2410, 23sylbi 121 . . . . 5  |-  ( <. X ,  Y >.  =  { <. x ,  x >. }  ->  ( ( A  e.  dom  G  /\  B  e.  dom  G )  ->  A  =  B ) )
2524adantl 277 . . . 4  |-  ( ( X  =  { x }  /\  <. X ,  Y >.  =  { <. x ,  x >. } )  -> 
( ( A  e. 
dom  G  /\  B  e. 
dom  G )  ->  A  =  B )
)
2625exlimiv 1644 . . 3  |-  ( E. x ( X  =  { x }  /\  <. X ,  Y >.  =  { <. x ,  x >. } )  ->  (
( A  e.  dom  G  /\  B  e.  dom  G )  ->  A  =  B ) )
278, 26sylbi 121 . 2  |-  ( Fun 
G  ->  ( ( A  e.  dom  G  /\  B  e.  dom  G )  ->  A  =  B ) )
28273impib 1225 1  |-  ( ( Fun  G  /\  A  e.  dom  G  /\  B  e.  dom  G )  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395   E.wex 1538    e. wcel 2200   {csn 3666   <.cop 3669   dom cdm 4718   Fun wfun 5311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-fun 5319
This theorem is referenced by:  fundm2domnop0  11062
  Copyright terms: Public domain W3C validator