| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funopdmsn | Unicode version | ||
| Description: The domain of a function which is an ordered pair is a singleton. (Contributed by AV, 15-Nov-2021.) (Avoid depending on this detail.) |
| Ref | Expression |
|---|---|
| funopdmsn.g |
|
| funopdmsn.x |
|
| funopdmsn.y |
|
| Ref | Expression |
|---|---|
| funopdmsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funopdmsn.g |
. . . . 5
| |
| 2 | 1 | funeqi 5291 |
. . . 4
|
| 3 | funopdmsn.x |
. . . . . 6
| |
| 4 | 3 | elexi 2783 |
. . . . 5
|
| 5 | funopdmsn.y |
. . . . . 6
| |
| 6 | 5 | elexi 2783 |
. . . . 5
|
| 7 | 4, 6 | funop 5762 |
. . . 4
|
| 8 | 2, 7 | bitri 184 |
. . 3
|
| 9 | 1 | eqcomi 2208 |
. . . . . . 7
|
| 10 | 9 | eqeq1i 2212 |
. . . . . 6
|
| 11 | dmeq 4877 |
. . . . . . . 8
| |
| 12 | vex 2774 |
. . . . . . . . 9
| |
| 13 | 12 | dmsnop 5155 |
. . . . . . . 8
|
| 14 | 11, 13 | eqtrdi 2253 |
. . . . . . 7
|
| 15 | eleq2 2268 |
. . . . . . . . 9
| |
| 16 | eleq2 2268 |
. . . . . . . . 9
| |
| 17 | 15, 16 | anbi12d 473 |
. . . . . . . 8
|
| 18 | elsni 3650 |
. . . . . . . . 9
| |
| 19 | elsni 3650 |
. . . . . . . . 9
| |
| 20 | eqtr3 2224 |
. . . . . . . . 9
| |
| 21 | 18, 19, 20 | syl2an 289 |
. . . . . . . 8
|
| 22 | 17, 21 | biimtrdi 163 |
. . . . . . 7
|
| 23 | 14, 22 | syl 14 |
. . . . . 6
|
| 24 | 10, 23 | sylbi 121 |
. . . . 5
|
| 25 | 24 | adantl 277 |
. . . 4
|
| 26 | 25 | exlimiv 1620 |
. . 3
|
| 27 | 8, 26 | sylbi 121 |
. 2
|
| 28 | 27 | 3impib 1203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-fun 5272 |
| This theorem is referenced by: fundm2domnop0 10988 |
| Copyright terms: Public domain | W3C validator |