ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funopdmsn Unicode version

Theorem funopdmsn 5763
Description: The domain of a function which is an ordered pair is a singleton. (Contributed by AV, 15-Nov-2021.) (Avoid depending on this detail.)
Hypotheses
Ref Expression
funopdmsn.g  |-  G  = 
<. X ,  Y >.
funopdmsn.x  |-  X  e.  V
funopdmsn.y  |-  Y  e.  W
Assertion
Ref Expression
funopdmsn  |-  ( ( Fun  G  /\  A  e.  dom  G  /\  B  e.  dom  G )  ->  A  =  B )

Proof of Theorem funopdmsn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 funopdmsn.g . . . . 5  |-  G  = 
<. X ,  Y >.
21funeqi 5291 . . . 4  |-  ( Fun 
G  <->  Fun  <. X ,  Y >. )
3 funopdmsn.x . . . . . 6  |-  X  e.  V
43elexi 2783 . . . . 5  |-  X  e. 
_V
5 funopdmsn.y . . . . . 6  |-  Y  e.  W
65elexi 2783 . . . . 5  |-  Y  e. 
_V
74, 6funop 5762 . . . 4  |-  ( Fun 
<. X ,  Y >.  <->  E. x ( X  =  { x }  /\  <. X ,  Y >.  =  { <. x ,  x >. } ) )
82, 7bitri 184 . . 3  |-  ( Fun 
G  <->  E. x ( X  =  { x }  /\  <. X ,  Y >.  =  { <. x ,  x >. } ) )
91eqcomi 2208 . . . . . . 7  |-  <. X ,  Y >.  =  G
109eqeq1i 2212 . . . . . 6  |-  ( <. X ,  Y >.  =  { <. x ,  x >. }  <->  G  =  { <. x ,  x >. } )
11 dmeq 4877 . . . . . . . 8  |-  ( G  =  { <. x ,  x >. }  ->  dom  G  =  dom  { <. x ,  x >. } )
12 vex 2774 . . . . . . . . 9  |-  x  e. 
_V
1312dmsnop 5155 . . . . . . . 8  |-  dom  { <. x ,  x >. }  =  { x }
1411, 13eqtrdi 2253 . . . . . . 7  |-  ( G  =  { <. x ,  x >. }  ->  dom  G  =  { x }
)
15 eleq2 2268 . . . . . . . . 9  |-  ( dom 
G  =  { x }  ->  ( A  e. 
dom  G  <->  A  e.  { x } ) )
16 eleq2 2268 . . . . . . . . 9  |-  ( dom 
G  =  { x }  ->  ( B  e. 
dom  G  <->  B  e.  { x } ) )
1715, 16anbi12d 473 . . . . . . . 8  |-  ( dom 
G  =  { x }  ->  ( ( A  e.  dom  G  /\  B  e.  dom  G )  <-> 
( A  e.  {
x }  /\  B  e.  { x } ) ) )
18 elsni 3650 . . . . . . . . 9  |-  ( A  e.  { x }  ->  A  =  x )
19 elsni 3650 . . . . . . . . 9  |-  ( B  e.  { x }  ->  B  =  x )
20 eqtr3 2224 . . . . . . . . 9  |-  ( ( A  =  x  /\  B  =  x )  ->  A  =  B )
2118, 19, 20syl2an 289 . . . . . . . 8  |-  ( ( A  e.  { x }  /\  B  e.  {
x } )  ->  A  =  B )
2217, 21biimtrdi 163 . . . . . . 7  |-  ( dom 
G  =  { x }  ->  ( ( A  e.  dom  G  /\  B  e.  dom  G )  ->  A  =  B ) )
2314, 22syl 14 . . . . . 6  |-  ( G  =  { <. x ,  x >. }  ->  (
( A  e.  dom  G  /\  B  e.  dom  G )  ->  A  =  B ) )
2410, 23sylbi 121 . . . . 5  |-  ( <. X ,  Y >.  =  { <. x ,  x >. }  ->  ( ( A  e.  dom  G  /\  B  e.  dom  G )  ->  A  =  B ) )
2524adantl 277 . . . 4  |-  ( ( X  =  { x }  /\  <. X ,  Y >.  =  { <. x ,  x >. } )  -> 
( ( A  e. 
dom  G  /\  B  e. 
dom  G )  ->  A  =  B )
)
2625exlimiv 1620 . . 3  |-  ( E. x ( X  =  { x }  /\  <. X ,  Y >.  =  { <. x ,  x >. } )  ->  (
( A  e.  dom  G  /\  B  e.  dom  G )  ->  A  =  B ) )
278, 26sylbi 121 . 2  |-  ( Fun 
G  ->  ( ( A  e.  dom  G  /\  B  e.  dom  G )  ->  A  =  B ) )
28273impib 1203 1  |-  ( ( Fun  G  /\  A  e.  dom  G  /\  B  e.  dom  G )  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1372   E.wex 1514    e. wcel 2175   {csn 3632   <.cop 3635   dom cdm 4674   Fun wfun 5264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-fun 5272
This theorem is referenced by:  fundm2domnop0  10988
  Copyright terms: Public domain W3C validator