| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpinvex | Unicode version | ||
| Description: Every member of a group has a left inverse. (Contributed by NM, 16-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| grpcl.b |
|
| grpcl.p |
|
| grpinvex.p |
|
| Ref | Expression |
|---|---|
| grpinvex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpcl.b |
. . . 4
| |
| 2 | grpcl.p |
. . . 4
| |
| 3 | grpinvex.p |
. . . 4
| |
| 4 | 1, 2, 3 | isgrp 13138 |
. . 3
|
| 5 | 4 | simprbi 275 |
. 2
|
| 6 | oveq2 5930 |
. . . . 5
| |
| 7 | 6 | eqeq1d 2205 |
. . . 4
|
| 8 | 7 | rexbidv 2498 |
. . 3
|
| 9 | 8 | rspccva 2867 |
. 2
|
| 10 | 5, 9 | sylan 283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-grp 13135 |
| This theorem is referenced by: dfgrp2 13159 grprcan 13169 grpinveu 13170 grprinv 13183 |
| Copyright terms: Public domain | W3C validator |