ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvex Unicode version

Theorem grpinvex 12718
Description: Every member of a group has a left inverse. (Contributed by NM, 16-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grpcl.b  |-  B  =  ( Base `  G
)
grpcl.p  |-  .+  =  ( +g  `  G )
grpinvex.p  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
grpinvex  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  E. y  e.  B  ( y  .+  X
)  =  .0.  )
Distinct variable groups:    y, B    y, G    y, X
Allowed substitution hints:    .+ ( y)    .0. ( y)

Proof of Theorem grpinvex
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 grpcl.b . . . 4  |-  B  =  ( Base `  G
)
2 grpcl.p . . . 4  |-  .+  =  ( +g  `  G )
3 grpinvex.p . . . 4  |-  .0.  =  ( 0g `  G )
41, 2, 3isgrp 12714 . . 3  |-  ( G  e.  Grp  <->  ( G  e.  Mnd  /\  A. x  e.  B  E. y  e.  B  ( y  .+  x )  =  .0.  ) )
54simprbi 273 . 2  |-  ( G  e.  Grp  ->  A. x  e.  B  E. y  e.  B  ( y  .+  x )  =  .0.  )
6 oveq2 5861 . . . . 5  |-  ( x  =  X  ->  (
y  .+  x )  =  ( y  .+  X ) )
76eqeq1d 2179 . . . 4  |-  ( x  =  X  ->  (
( y  .+  x
)  =  .0.  <->  ( y  .+  X )  =  .0.  ) )
87rexbidv 2471 . . 3  |-  ( x  =  X  ->  ( E. y  e.  B  ( y  .+  x
)  =  .0.  <->  E. y  e.  B  ( y  .+  X )  =  .0.  ) )
98rspccva 2833 . 2  |-  ( ( A. x  e.  B  E. y  e.  B  ( y  .+  x
)  =  .0.  /\  X  e.  B )  ->  E. y  e.  B  ( y  .+  X
)  =  .0.  )
105, 9sylan 281 1  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  E. y  e.  B  ( y  .+  X
)  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449   ` cfv 5198  (class class class)co 5853   Basecbs 12416   +g cplusg 12480   0gc0g 12596   Mndcmnd 12652   Grpcgrp 12708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-iota 5160  df-fv 5206  df-ov 5856  df-grp 12711
This theorem is referenced by:  dfgrp2  12732  grprcan  12740  grpinveu  12741  grprinv  12753
  Copyright terms: Public domain W3C validator