ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvex Unicode version

Theorem grpinvex 13082
Description: Every member of a group has a left inverse. (Contributed by NM, 16-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grpcl.b  |-  B  =  ( Base `  G
)
grpcl.p  |-  .+  =  ( +g  `  G )
grpinvex.p  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
grpinvex  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  E. y  e.  B  ( y  .+  X
)  =  .0.  )
Distinct variable groups:    y, B    y, G    y, X
Allowed substitution hints:    .+ ( y)    .0. ( y)

Proof of Theorem grpinvex
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 grpcl.b . . . 4  |-  B  =  ( Base `  G
)
2 grpcl.p . . . 4  |-  .+  =  ( +g  `  G )
3 grpinvex.p . . . 4  |-  .0.  =  ( 0g `  G )
41, 2, 3isgrp 13078 . . 3  |-  ( G  e.  Grp  <->  ( G  e.  Mnd  /\  A. x  e.  B  E. y  e.  B  ( y  .+  x )  =  .0.  ) )
54simprbi 275 . 2  |-  ( G  e.  Grp  ->  A. x  e.  B  E. y  e.  B  ( y  .+  x )  =  .0.  )
6 oveq2 5926 . . . . 5  |-  ( x  =  X  ->  (
y  .+  x )  =  ( y  .+  X ) )
76eqeq1d 2202 . . . 4  |-  ( x  =  X  ->  (
( y  .+  x
)  =  .0.  <->  ( y  .+  X )  =  .0.  ) )
87rexbidv 2495 . . 3  |-  ( x  =  X  ->  ( E. y  e.  B  ( y  .+  x
)  =  .0.  <->  E. y  e.  B  ( y  .+  X )  =  .0.  ) )
98rspccva 2863 . 2  |-  ( ( A. x  e.  B  E. y  e.  B  ( y  .+  x
)  =  .0.  /\  X  e.  B )  ->  E. y  e.  B  ( y  .+  X
)  =  .0.  )
105, 9sylan 283 1  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  E. y  e.  B  ( y  .+  X
)  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   0gc0g 12867   Mndcmnd 12997   Grpcgrp 13072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-ov 5921  df-grp 13075
This theorem is referenced by:  dfgrp2  13099  grprcan  13109  grpinveu  13110  grprinv  13123
  Copyright terms: Public domain W3C validator