Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > grpinvex | Unicode version |
Description: Every member of a group has a left inverse. (Contributed by NM, 16-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
grpcl.b | |
grpcl.p | |
grpinvex.p |
Ref | Expression |
---|---|
grpinvex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpcl.b | . . . 4 | |
2 | grpcl.p | . . . 4 | |
3 | grpinvex.p | . . . 4 | |
4 | 1, 2, 3 | isgrp 12714 | . . 3 |
5 | 4 | simprbi 273 | . 2 |
6 | oveq2 5861 | . . . . 5 | |
7 | 6 | eqeq1d 2179 | . . . 4 |
8 | 7 | rexbidv 2471 | . . 3 |
9 | 8 | rspccva 2833 | . 2 |
10 | 5, 9 | sylan 281 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 wral 2448 wrex 2449 cfv 5198 (class class class)co 5853 cbs 12416 cplusg 12480 c0g 12596 cmnd 12652 cgrp 12708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 df-grp 12711 |
This theorem is referenced by: dfgrp2 12732 grprcan 12740 grpinveu 12741 grprinv 12753 |
Copyright terms: Public domain | W3C validator |