| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpass | Unicode version | ||
| Description: A group operation is associative. (Contributed by NM, 14-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpcl.b |
|
| grpcl.p |
|
| Ref | Expression |
|---|---|
| grpass |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 13526 |
. 2
| |
| 2 | grpcl.b |
. . 3
| |
| 3 | grpcl.p |
. . 3
| |
| 4 | 2, 3 | mndass 13443 |
. 2
|
| 5 | 1, 4 | sylan 283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-cnex 8078 ax-resscn 8079 ax-1re 8081 ax-addrcl 8084 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-iota 5274 df-fun 5316 df-fn 5317 df-fv 5322 df-ov 5997 df-inn 9099 df-2 9157 df-ndx 13021 df-slot 13022 df-base 13024 df-plusg 13109 df-sgrp 13421 df-mnd 13436 df-grp 13522 |
| This theorem is referenced by: grpassd 13531 grprcan 13556 grprinv 13570 grpinvid1 13571 grpinvid2 13572 grpressid 13580 grplcan 13581 grpasscan1 13582 grpasscan2 13583 grplmulf1o 13593 grpinvadd 13597 grpsubadd 13607 grpaddsubass 13609 grpsubsub4 13612 dfgrp3m 13618 grplactcnv 13621 imasgrp 13634 mulgaddcomlem 13668 mulgaddcom 13669 mulgdirlem 13676 issubg2m 13712 isnsg3 13730 nmzsubg 13733 ssnmz 13734 eqger 13747 eqgcpbl 13751 qusgrp 13755 conjghm 13799 conjnmz 13802 ringcom 13980 lmodass 14252 |
| Copyright terms: Public domain | W3C validator |