| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpass | Unicode version | ||
| Description: A group operation is associative. (Contributed by NM, 14-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpcl.b |
|
| grpcl.p |
|
| Ref | Expression |
|---|---|
| grpass |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 13383 |
. 2
| |
| 2 | grpcl.b |
. . 3
| |
| 3 | grpcl.p |
. . 3
| |
| 4 | 2, 3 | mndass 13300 |
. 2
|
| 5 | 1, 4 | sylan 283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-cnex 8023 ax-resscn 8024 ax-1re 8026 ax-addrcl 8029 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3000 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-iota 5237 df-fun 5278 df-fn 5279 df-fv 5284 df-ov 5954 df-inn 9044 df-2 9102 df-ndx 12879 df-slot 12880 df-base 12882 df-plusg 12966 df-sgrp 13278 df-mnd 13293 df-grp 13379 |
| This theorem is referenced by: grpassd 13388 grprcan 13413 grprinv 13427 grpinvid1 13428 grpinvid2 13429 grpressid 13437 grplcan 13438 grpasscan1 13439 grpasscan2 13440 grplmulf1o 13450 grpinvadd 13454 grpsubadd 13464 grpaddsubass 13466 grpsubsub4 13469 dfgrp3m 13475 grplactcnv 13478 imasgrp 13491 mulgaddcomlem 13525 mulgaddcom 13526 mulgdirlem 13533 issubg2m 13569 isnsg3 13587 nmzsubg 13590 ssnmz 13591 eqger 13604 eqgcpbl 13608 qusgrp 13612 conjghm 13656 conjnmz 13659 ringcom 13837 lmodass 14109 |
| Copyright terms: Public domain | W3C validator |