| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpass | Unicode version | ||
| Description: A group operation is associative. (Contributed by NM, 14-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpcl.b |
|
| grpcl.p |
|
| Ref | Expression |
|---|---|
| grpass |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 13209 |
. 2
| |
| 2 | grpcl.b |
. . 3
| |
| 3 | grpcl.p |
. . 3
| |
| 4 | 2, 3 | mndass 13126 |
. 2
|
| 5 | 1, 4 | sylan 283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-ov 5928 df-inn 9008 df-2 9066 df-ndx 12706 df-slot 12707 df-base 12709 df-plusg 12793 df-sgrp 13104 df-mnd 13119 df-grp 13205 |
| This theorem is referenced by: grpassd 13214 grprcan 13239 grprinv 13253 grpinvid1 13254 grpinvid2 13255 grpressid 13263 grplcan 13264 grpasscan1 13265 grpasscan2 13266 grplmulf1o 13276 grpinvadd 13280 grpsubadd 13290 grpaddsubass 13292 grpsubsub4 13295 dfgrp3m 13301 grplactcnv 13304 imasgrp 13317 mulgaddcomlem 13351 mulgaddcom 13352 mulgdirlem 13359 issubg2m 13395 isnsg3 13413 nmzsubg 13416 ssnmz 13417 eqger 13430 eqgcpbl 13434 qusgrp 13438 conjghm 13482 conjnmz 13485 ringcom 13663 lmodass 13935 |
| Copyright terms: Public domain | W3C validator |