| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grprinv | Unicode version | ||
| Description: The right inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| grpinv.b |
|
| grpinv.p |
|
| grpinv.u |
|
| grpinv.n |
|
| Ref | Expression |
|---|---|
| grprinv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinv.b |
. . 3
| |
| 2 | grpinv.p |
. . 3
| |
| 3 | 1, 2 | grpcl 13311 |
. 2
|
| 4 | grpinv.u |
. . 3
| |
| 5 | 1, 4 | grpidcl 13332 |
. 2
|
| 6 | 1, 2, 4 | grplid 13334 |
. 2
|
| 7 | 1, 2 | grpass 13312 |
. 2
|
| 8 | 1, 2, 4 | grpinvex 13313 |
. 2
|
| 9 | simpr 110 |
. 2
| |
| 10 | grpinv.n |
. . 3
| |
| 11 | 1, 10 | grpinvcl 13351 |
. 2
|
| 12 | 1, 2, 4, 10 | grplinv 13353 |
. 2
|
| 13 | 3, 5, 6, 7, 8, 9, 11, 12 | grpinva 13189 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-inn 9036 df-2 9094 df-ndx 12806 df-slot 12807 df-base 12809 df-plusg 12893 df-0g 13061 df-mgm 13159 df-sgrp 13205 df-mnd 13220 df-grp 13306 df-minusg 13307 |
| This theorem is referenced by: grpinvid1 13355 grpinvid2 13356 grprinvd 13359 grplrinv 13360 grpasscan1 13366 grpinvinv 13370 grplmulf1o 13377 grpinvadd 13381 grpsubid 13387 dfgrp3m 13402 mulgdirlem 13460 subginv 13488 nmzsubg 13517 eqger 13531 qusinv 13543 ghminv 13557 ringnegl 13784 unitrinv 13860 lmodvnegid 14062 |
| Copyright terms: Public domain | W3C validator |