ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvex GIF version

Theorem grpinvex 13082
Description: Every member of a group has a left inverse. (Contributed by NM, 16-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grpcl.b 𝐵 = (Base‘𝐺)
grpcl.p + = (+g𝐺)
grpinvex.p 0 = (0g𝐺)
Assertion
Ref Expression
grpinvex ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ∃𝑦𝐵 (𝑦 + 𝑋) = 0 )
Distinct variable groups:   𝑦,𝐵   𝑦,𝐺   𝑦,𝑋
Allowed substitution hints:   + (𝑦)   0 (𝑦)

Proof of Theorem grpinvex
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 grpcl.b . . . 4 𝐵 = (Base‘𝐺)
2 grpcl.p . . . 4 + = (+g𝐺)
3 grpinvex.p . . . 4 0 = (0g𝐺)
41, 2, 3isgrp 13078 . . 3 (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑥𝐵𝑦𝐵 (𝑦 + 𝑥) = 0 ))
54simprbi 275 . 2 (𝐺 ∈ Grp → ∀𝑥𝐵𝑦𝐵 (𝑦 + 𝑥) = 0 )
6 oveq2 5926 . . . . 5 (𝑥 = 𝑋 → (𝑦 + 𝑥) = (𝑦 + 𝑋))
76eqeq1d 2202 . . . 4 (𝑥 = 𝑋 → ((𝑦 + 𝑥) = 0 ↔ (𝑦 + 𝑋) = 0 ))
87rexbidv 2495 . . 3 (𝑥 = 𝑋 → (∃𝑦𝐵 (𝑦 + 𝑥) = 0 ↔ ∃𝑦𝐵 (𝑦 + 𝑋) = 0 ))
98rspccva 2863 . 2 ((∀𝑥𝐵𝑦𝐵 (𝑦 + 𝑥) = 0𝑋𝐵) → ∃𝑦𝐵 (𝑦 + 𝑋) = 0 )
105, 9sylan 283 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ∃𝑦𝐵 (𝑦 + 𝑋) = 0 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wral 2472  wrex 2473  cfv 5254  (class class class)co 5918  Basecbs 12618  +gcplusg 12695  0gc0g 12867  Mndcmnd 12997  Grpcgrp 13072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-ov 5921  df-grp 13075
This theorem is referenced by:  dfgrp2  13099  grprcan  13109  grpinveu  13110  grprinv  13123
  Copyright terms: Public domain W3C validator