![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > grpinvex | GIF version |
Description: Every member of a group has a left inverse. (Contributed by NM, 16-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
grpcl.b | ⊢ 𝐵 = (Base‘𝐺) |
grpcl.p | ⊢ + = (+g‘𝐺) |
grpinvex.p | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
grpinvex | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grpcl.p | . . . 4 ⊢ + = (+g‘𝐺) | |
3 | grpinvex.p | . . . 4 ⊢ 0 = (0g‘𝐺) | |
4 | 1, 2, 3 | isgrp 12815 | . . 3 ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 )) |
5 | 4 | simprbi 275 | . 2 ⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) |
6 | oveq2 5880 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑦 + 𝑥) = (𝑦 + 𝑋)) | |
7 | 6 | eqeq1d 2186 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑦 + 𝑥) = 0 ↔ (𝑦 + 𝑋) = 0 )) |
8 | 7 | rexbidv 2478 | . . 3 ⊢ (𝑥 = 𝑋 → (∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ↔ ∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 )) |
9 | 8 | rspccva 2840 | . 2 ⊢ ((∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ∧ 𝑋 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) |
10 | 5, 9 | sylan 283 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ∀wral 2455 ∃wrex 2456 ‘cfv 5215 (class class class)co 5872 Basecbs 12454 +gcplusg 12528 0gc0g 12693 Mndcmnd 12749 Grpcgrp 12809 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2739 df-un 3133 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-br 4003 df-iota 5177 df-fv 5223 df-ov 5875 df-grp 12812 |
This theorem is referenced by: dfgrp2 12834 grprcan 12842 grpinveu 12843 grprinv 12855 |
Copyright terms: Public domain | W3C validator |