ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imaexg GIF version

Theorem imaexg 5078
Description: The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by NM, 24-Jul-1995.)
Assertion
Ref Expression
imaexg (𝐴𝑉 → (𝐴𝐵) ∈ V)

Proof of Theorem imaexg
StepHypRef Expression
1 imassrn 5075 . 2 (𝐴𝐵) ⊆ ran 𝐴
2 rnexg 4985 . 2 (𝐴𝑉 → ran 𝐴 ∈ V)
3 ssexg 4222 . 2 (((𝐴𝐵) ⊆ ran 𝐴 ∧ ran 𝐴 ∈ V) → (𝐴𝐵) ∈ V)
41, 2, 3sylancr 414 1 (𝐴𝑉 → (𝐴𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  Vcvv 2799  wss 3197  ran crn 4717  cima 4719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4722  df-cnv 4724  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729
This theorem is referenced by:  imaex  5079  ecexg  6674  fopwdom  6985  isinfinf  7047  isunitd  14055
  Copyright terms: Public domain W3C validator