ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imaexg GIF version

Theorem imaexg 4851
Description: The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by NM, 24-Jul-1995.)
Assertion
Ref Expression
imaexg (𝐴𝑉 → (𝐴𝐵) ∈ V)

Proof of Theorem imaexg
StepHypRef Expression
1 imassrn 4850 . 2 (𝐴𝐵) ⊆ ran 𝐴
2 rnexg 4762 . 2 (𝐴𝑉 → ran 𝐴 ∈ V)
3 ssexg 4027 . 2 (((𝐴𝐵) ⊆ ran 𝐴 ∧ ran 𝐴 ∈ V) → (𝐴𝐵) ∈ V)
41, 2, 3sylancr 408 1 (𝐴𝑉 → (𝐴𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1463  Vcvv 2657  wss 3037  ran crn 4500  cima 4502
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-v 2659  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-br 3896  df-opab 3950  df-xp 4505  df-cnv 4507  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512
This theorem is referenced by:  imaex  4852  ecexg  6387  fopwdom  6683  isinfinf  6744
  Copyright terms: Public domain W3C validator