| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rnexg | Unicode version | ||
| Description: The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) |
| Ref | Expression |
|---|---|
| rnexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 4530 |
. 2
| |
| 2 | uniexg 4530 |
. 2
| |
| 3 | ssun2 3368 |
. . . 4
| |
| 4 | dmrnssfld 4987 |
. . . 4
| |
| 5 | 3, 4 | sstri 3233 |
. . 3
|
| 6 | ssexg 4223 |
. . 3
| |
| 7 | 5, 6 | mpan 424 |
. 2
|
| 8 | 1, 2, 7 | 3syl 17 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-cnv 4727 df-dm 4729 df-rn 4730 |
| This theorem is referenced by: rnex 4992 imaexg 5082 xpexr2m 5170 elxp4 5216 elxp5 5217 cnvexg 5266 coexg 5273 fvexg 5646 cofunexg 6254 funrnex 6259 abrexexg 6263 2ndvalg 6289 tposexg 6404 iunon 6430 fopwdom 6997 djuexb 7211 shftfvalg 11329 ovshftex 11330 restval 13278 ptex 13297 imasex 13338 txvalex 14928 txval 14929 blbas 15107 xmettxlem 15183 xmettx 15184 edgvalg 15860 edgopval 15862 edgstruct 15864 usgrausgrien 15967 ausgrumgrien 15968 ausgrusgrien 15969 |
| Copyright terms: Public domain | W3C validator |