| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rnexg | Unicode version | ||
| Description: The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) |
| Ref | Expression |
|---|---|
| rnexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 4474 |
. 2
| |
| 2 | uniexg 4474 |
. 2
| |
| 3 | ssun2 3327 |
. . . 4
| |
| 4 | dmrnssfld 4929 |
. . . 4
| |
| 5 | 3, 4 | sstri 3192 |
. . 3
|
| 6 | ssexg 4172 |
. . 3
| |
| 7 | 5, 6 | mpan 424 |
. 2
|
| 8 | 1, 2, 7 | 3syl 17 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-cnv 4671 df-dm 4673 df-rn 4674 |
| This theorem is referenced by: rnex 4933 imaexg 5023 xpexr2m 5111 elxp4 5157 elxp5 5158 cnvexg 5207 coexg 5214 fvexg 5577 cofunexg 6166 funrnex 6171 abrexexg 6175 2ndvalg 6201 tposexg 6316 iunon 6342 fopwdom 6897 djuexb 7110 shftfvalg 10983 ovshftex 10984 restval 12916 ptex 12935 imasex 12948 txvalex 14490 txval 14491 blbas 14669 xmettxlem 14745 xmettx 14746 |
| Copyright terms: Public domain | W3C validator |