| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rnexg | Unicode version | ||
| Description: The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) |
| Ref | Expression |
|---|---|
| rnexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 4487 |
. 2
| |
| 2 | uniexg 4487 |
. 2
| |
| 3 | ssun2 3337 |
. . . 4
| |
| 4 | dmrnssfld 4942 |
. . . 4
| |
| 5 | 3, 4 | sstri 3202 |
. . 3
|
| 6 | ssexg 4184 |
. . 3
| |
| 7 | 5, 6 | mpan 424 |
. 2
|
| 8 | 1, 2, 7 | 3syl 17 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-cnv 4684 df-dm 4686 df-rn 4687 |
| This theorem is referenced by: rnex 4947 imaexg 5037 xpexr2m 5125 elxp4 5171 elxp5 5172 cnvexg 5221 coexg 5228 fvexg 5597 cofunexg 6196 funrnex 6201 abrexexg 6205 2ndvalg 6231 tposexg 6346 iunon 6372 fopwdom 6935 djuexb 7148 shftfvalg 11162 ovshftex 11163 restval 13110 ptex 13129 imasex 13170 txvalex 14759 txval 14760 blbas 14938 xmettxlem 15014 xmettx 15015 edgvalg 15687 edgopval 15689 edgstruct 15691 |
| Copyright terms: Public domain | W3C validator |