| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isinfinf | Unicode version | ||
| Description: An infinite set contains subsets of arbitrarily large finite cardinality. (Contributed by Jim Kingdon, 15-Jun-2022.) |
| Ref | Expression |
|---|---|
| isinfinf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomi 6851 |
. . . 4
| |
| 2 | 1 | adantr 276 |
. . 3
|
| 3 | vex 2776 |
. . . . 5
| |
| 4 | imaexg 5045 |
. . . . 5
| |
| 5 | 3, 4 | ax-mp 5 |
. . . 4
|
| 6 | imassrn 5042 |
. . . . . 6
| |
| 7 | simpr 110 |
. . . . . . 7
| |
| 8 | f1f 5493 |
. . . . . . 7
| |
| 9 | frn 5444 |
. . . . . . 7
| |
| 10 | 7, 8, 9 | 3syl 17 |
. . . . . 6
|
| 11 | 6, 10 | sstrid 3208 |
. . . . 5
|
| 12 | ordom 4663 |
. . . . . . . 8
| |
| 13 | ordelss 4434 |
. . . . . . . 8
| |
| 14 | 12, 13 | mpan 424 |
. . . . . . 7
|
| 15 | 14 | ad2antlr 489 |
. . . . . 6
|
| 16 | simplr 528 |
. . . . . 6
| |
| 17 | f1imaeng 6897 |
. . . . . 6
| |
| 18 | 7, 15, 16, 17 | syl3anc 1250 |
. . . . 5
|
| 19 | 11, 18 | jca 306 |
. . . 4
|
| 20 | sseq1 3220 |
. . . . . 6
| |
| 21 | breq1 4054 |
. . . . . 6
| |
| 22 | 20, 21 | anbi12d 473 |
. . . . 5
|
| 23 | 22 | spcegv 2865 |
. . . 4
|
| 24 | 5, 19, 23 | mpsyl 65 |
. . 3
|
| 25 | 2, 24 | exlimddv 1923 |
. 2
|
| 26 | 25 | ralrimiva 2580 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-iinf 4644 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-iord 4421 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-er 6633 df-en 6841 df-dom 6842 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |