ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isinfinf Unicode version

Theorem isinfinf 6953
Description: An infinite set contains subsets of arbitrarily large finite cardinality. (Contributed by Jim Kingdon, 15-Jun-2022.)
Assertion
Ref Expression
isinfinf  |-  ( om  ~<_  A  ->  A. n  e.  om  E. x ( x  C_  A  /\  x  ~~  n ) )
Distinct variable group:    A, n, x

Proof of Theorem isinfinf
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 brdomi 6803 . . . 4  |-  ( om  ~<_  A  ->  E. f 
f : om -1-1-> A
)
21adantr 276 . . 3  |-  ( ( om  ~<_  A  /\  n  e.  om )  ->  E. f 
f : om -1-1-> A
)
3 vex 2763 . . . . 5  |-  f  e. 
_V
4 imaexg 5019 . . . . 5  |-  ( f  e.  _V  ->  (
f " n )  e.  _V )
53, 4ax-mp 5 . . . 4  |-  ( f
" n )  e. 
_V
6 imassrn 5016 . . . . . 6  |-  ( f
" n )  C_  ran  f
7 simpr 110 . . . . . . 7  |-  ( ( ( om  ~<_  A  /\  n  e.  om )  /\  f : om -1-1-> A
)  ->  f : om
-1-1-> A )
8 f1f 5459 . . . . . . 7  |-  ( f : om -1-1-> A  -> 
f : om --> A )
9 frn 5412 . . . . . . 7  |-  ( f : om --> A  ->  ran  f  C_  A )
107, 8, 93syl 17 . . . . . 6  |-  ( ( ( om  ~<_  A  /\  n  e.  om )  /\  f : om -1-1-> A
)  ->  ran  f  C_  A )
116, 10sstrid 3190 . . . . 5  |-  ( ( ( om  ~<_  A  /\  n  e.  om )  /\  f : om -1-1-> A
)  ->  ( f " n )  C_  A )
12 ordom 4639 . . . . . . . 8  |-  Ord  om
13 ordelss 4410 . . . . . . . 8  |-  ( ( Ord  om  /\  n  e.  om )  ->  n  C_ 
om )
1412, 13mpan 424 . . . . . . 7  |-  ( n  e.  om  ->  n  C_ 
om )
1514ad2antlr 489 . . . . . 6  |-  ( ( ( om  ~<_  A  /\  n  e.  om )  /\  f : om -1-1-> A
)  ->  n  C_  om )
16 simplr 528 . . . . . 6  |-  ( ( ( om  ~<_  A  /\  n  e.  om )  /\  f : om -1-1-> A
)  ->  n  e.  om )
17 f1imaeng 6846 . . . . . 6  |-  ( ( f : om -1-1-> A  /\  n  C_  om  /\  n  e.  om )  ->  ( f " n
)  ~~  n )
187, 15, 16, 17syl3anc 1249 . . . . 5  |-  ( ( ( om  ~<_  A  /\  n  e.  om )  /\  f : om -1-1-> A
)  ->  ( f " n )  ~~  n )
1911, 18jca 306 . . . 4  |-  ( ( ( om  ~<_  A  /\  n  e.  om )  /\  f : om -1-1-> A
)  ->  ( (
f " n ) 
C_  A  /\  (
f " n ) 
~~  n ) )
20 sseq1 3202 . . . . . 6  |-  ( x  =  ( f "
n )  ->  (
x  C_  A  <->  ( f " n )  C_  A ) )
21 breq1 4032 . . . . . 6  |-  ( x  =  ( f "
n )  ->  (
x  ~~  n  <->  ( f " n )  ~~  n ) )
2220, 21anbi12d 473 . . . . 5  |-  ( x  =  ( f "
n )  ->  (
( x  C_  A  /\  x  ~~  n )  <-> 
( ( f "
n )  C_  A  /\  ( f " n
)  ~~  n )
) )
2322spcegv 2848 . . . 4  |-  ( ( f " n )  e.  _V  ->  (
( ( f "
n )  C_  A  /\  ( f " n
)  ~~  n )  ->  E. x ( x 
C_  A  /\  x  ~~  n ) ) )
245, 19, 23mpsyl 65 . . 3  |-  ( ( ( om  ~<_  A  /\  n  e.  om )  /\  f : om -1-1-> A
)  ->  E. x
( x  C_  A  /\  x  ~~  n ) )
252, 24exlimddv 1910 . 2  |-  ( ( om  ~<_  A  /\  n  e.  om )  ->  E. x
( x  C_  A  /\  x  ~~  n ) )
2625ralrimiva 2567 1  |-  ( om  ~<_  A  ->  A. n  e.  om  E. x ( x  C_  A  /\  x  ~~  n ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1503    e. wcel 2164   A.wral 2472   _Vcvv 2760    C_ wss 3153   class class class wbr 4029   Ord word 4393   omcom 4622   ran crn 4660   "cima 4662   -->wf 5250   -1-1->wf1 5251    ~~ cen 6792    ~<_ cdom 6793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-er 6587  df-en 6795  df-dom 6796
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator