ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isinfinf Unicode version

Theorem isinfinf 6967
Description: An infinite set contains subsets of arbitrarily large finite cardinality. (Contributed by Jim Kingdon, 15-Jun-2022.)
Assertion
Ref Expression
isinfinf  |-  ( om  ~<_  A  ->  A. n  e.  om  E. x ( x  C_  A  /\  x  ~~  n ) )
Distinct variable group:    A, n, x

Proof of Theorem isinfinf
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 brdomi 6817 . . . 4  |-  ( om  ~<_  A  ->  E. f 
f : om -1-1-> A
)
21adantr 276 . . 3  |-  ( ( om  ~<_  A  /\  n  e.  om )  ->  E. f 
f : om -1-1-> A
)
3 vex 2766 . . . . 5  |-  f  e. 
_V
4 imaexg 5024 . . . . 5  |-  ( f  e.  _V  ->  (
f " n )  e.  _V )
53, 4ax-mp 5 . . . 4  |-  ( f
" n )  e. 
_V
6 imassrn 5021 . . . . . 6  |-  ( f
" n )  C_  ran  f
7 simpr 110 . . . . . . 7  |-  ( ( ( om  ~<_  A  /\  n  e.  om )  /\  f : om -1-1-> A
)  ->  f : om
-1-1-> A )
8 f1f 5466 . . . . . . 7  |-  ( f : om -1-1-> A  -> 
f : om --> A )
9 frn 5419 . . . . . . 7  |-  ( f : om --> A  ->  ran  f  C_  A )
107, 8, 93syl 17 . . . . . 6  |-  ( ( ( om  ~<_  A  /\  n  e.  om )  /\  f : om -1-1-> A
)  ->  ran  f  C_  A )
116, 10sstrid 3195 . . . . 5  |-  ( ( ( om  ~<_  A  /\  n  e.  om )  /\  f : om -1-1-> A
)  ->  ( f " n )  C_  A )
12 ordom 4644 . . . . . . . 8  |-  Ord  om
13 ordelss 4415 . . . . . . . 8  |-  ( ( Ord  om  /\  n  e.  om )  ->  n  C_ 
om )
1412, 13mpan 424 . . . . . . 7  |-  ( n  e.  om  ->  n  C_ 
om )
1514ad2antlr 489 . . . . . 6  |-  ( ( ( om  ~<_  A  /\  n  e.  om )  /\  f : om -1-1-> A
)  ->  n  C_  om )
16 simplr 528 . . . . . 6  |-  ( ( ( om  ~<_  A  /\  n  e.  om )  /\  f : om -1-1-> A
)  ->  n  e.  om )
17 f1imaeng 6860 . . . . . 6  |-  ( ( f : om -1-1-> A  /\  n  C_  om  /\  n  e.  om )  ->  ( f " n
)  ~~  n )
187, 15, 16, 17syl3anc 1249 . . . . 5  |-  ( ( ( om  ~<_  A  /\  n  e.  om )  /\  f : om -1-1-> A
)  ->  ( f " n )  ~~  n )
1911, 18jca 306 . . . 4  |-  ( ( ( om  ~<_  A  /\  n  e.  om )  /\  f : om -1-1-> A
)  ->  ( (
f " n ) 
C_  A  /\  (
f " n ) 
~~  n ) )
20 sseq1 3207 . . . . . 6  |-  ( x  =  ( f "
n )  ->  (
x  C_  A  <->  ( f " n )  C_  A ) )
21 breq1 4037 . . . . . 6  |-  ( x  =  ( f "
n )  ->  (
x  ~~  n  <->  ( f " n )  ~~  n ) )
2220, 21anbi12d 473 . . . . 5  |-  ( x  =  ( f "
n )  ->  (
( x  C_  A  /\  x  ~~  n )  <-> 
( ( f "
n )  C_  A  /\  ( f " n
)  ~~  n )
) )
2322spcegv 2852 . . . 4  |-  ( ( f " n )  e.  _V  ->  (
( ( f "
n )  C_  A  /\  ( f " n
)  ~~  n )  ->  E. x ( x 
C_  A  /\  x  ~~  n ) ) )
245, 19, 23mpsyl 65 . . 3  |-  ( ( ( om  ~<_  A  /\  n  e.  om )  /\  f : om -1-1-> A
)  ->  E. x
( x  C_  A  /\  x  ~~  n ) )
252, 24exlimddv 1913 . 2  |-  ( ( om  ~<_  A  /\  n  e.  om )  ->  E. x
( x  C_  A  /\  x  ~~  n ) )
2625ralrimiva 2570 1  |-  ( om  ~<_  A  ->  A. n  e.  om  E. x ( x  C_  A  /\  x  ~~  n ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1506    e. wcel 2167   A.wral 2475   _Vcvv 2763    C_ wss 3157   class class class wbr 4034   Ord word 4398   omcom 4627   ran crn 4665   "cima 4667   -->wf 5255   -1-1->wf1 5256    ~~ cen 6806    ~<_ cdom 6807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-er 6601  df-en 6809  df-dom 6810
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator