ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isinfinf Unicode version

Theorem isinfinf 6667
Description: An infinite set contains subsets of arbitrarily large finite cardinality. (Contributed by Jim Kingdon, 15-Jun-2022.)
Assertion
Ref Expression
isinfinf  |-  ( om  ~<_  A  ->  A. n  e.  om  E. x ( x  C_  A  /\  x  ~~  n ) )
Distinct variable group:    A, n, x

Proof of Theorem isinfinf
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 brdomi 6520 . . . 4  |-  ( om  ~<_  A  ->  E. f 
f : om -1-1-> A
)
21adantr 271 . . 3  |-  ( ( om  ~<_  A  /\  n  e.  om )  ->  E. f 
f : om -1-1-> A
)
3 vex 2623 . . . . 5  |-  f  e. 
_V
4 imaexg 4799 . . . . 5  |-  ( f  e.  _V  ->  (
f " n )  e.  _V )
53, 4ax-mp 7 . . . 4  |-  ( f
" n )  e. 
_V
6 imassrn 4798 . . . . . 6  |-  ( f
" n )  C_  ran  f
7 simpr 109 . . . . . . 7  |-  ( ( ( om  ~<_  A  /\  n  e.  om )  /\  f : om -1-1-> A
)  ->  f : om
-1-1-> A )
8 f1f 5229 . . . . . . 7  |-  ( f : om -1-1-> A  -> 
f : om --> A )
9 frn 5182 . . . . . . 7  |-  ( f : om --> A  ->  ran  f  C_  A )
107, 8, 93syl 17 . . . . . 6  |-  ( ( ( om  ~<_  A  /\  n  e.  om )  /\  f : om -1-1-> A
)  ->  ran  f  C_  A )
116, 10syl5ss 3037 . . . . 5  |-  ( ( ( om  ~<_  A  /\  n  e.  om )  /\  f : om -1-1-> A
)  ->  ( f " n )  C_  A )
12 ordom 4434 . . . . . . . 8  |-  Ord  om
13 ordelss 4215 . . . . . . . 8  |-  ( ( Ord  om  /\  n  e.  om )  ->  n  C_ 
om )
1412, 13mpan 416 . . . . . . 7  |-  ( n  e.  om  ->  n  C_ 
om )
1514ad2antlr 474 . . . . . 6  |-  ( ( ( om  ~<_  A  /\  n  e.  om )  /\  f : om -1-1-> A
)  ->  n  C_  om )
16 simplr 498 . . . . . 6  |-  ( ( ( om  ~<_  A  /\  n  e.  om )  /\  f : om -1-1-> A
)  ->  n  e.  om )
17 f1imaeng 6563 . . . . . 6  |-  ( ( f : om -1-1-> A  /\  n  C_  om  /\  n  e.  om )  ->  ( f " n
)  ~~  n )
187, 15, 16, 17syl3anc 1175 . . . . 5  |-  ( ( ( om  ~<_  A  /\  n  e.  om )  /\  f : om -1-1-> A
)  ->  ( f " n )  ~~  n )
1911, 18jca 301 . . . 4  |-  ( ( ( om  ~<_  A  /\  n  e.  om )  /\  f : om -1-1-> A
)  ->  ( (
f " n ) 
C_  A  /\  (
f " n ) 
~~  n ) )
20 sseq1 3048 . . . . . 6  |-  ( x  =  ( f "
n )  ->  (
x  C_  A  <->  ( f " n )  C_  A ) )
21 breq1 3854 . . . . . 6  |-  ( x  =  ( f "
n )  ->  (
x  ~~  n  <->  ( f " n )  ~~  n ) )
2220, 21anbi12d 458 . . . . 5  |-  ( x  =  ( f "
n )  ->  (
( x  C_  A  /\  x  ~~  n )  <-> 
( ( f "
n )  C_  A  /\  ( f " n
)  ~~  n )
) )
2322spcegv 2708 . . . 4  |-  ( ( f " n )  e.  _V  ->  (
( ( f "
n )  C_  A  /\  ( f " n
)  ~~  n )  ->  E. x ( x 
C_  A  /\  x  ~~  n ) ) )
245, 19, 23mpsyl 65 . . 3  |-  ( ( ( om  ~<_  A  /\  n  e.  om )  /\  f : om -1-1-> A
)  ->  E. x
( x  C_  A  /\  x  ~~  n ) )
252, 24exlimddv 1827 . 2  |-  ( ( om  ~<_  A  /\  n  e.  om )  ->  E. x
( x  C_  A  /\  x  ~~  n ) )
2625ralrimiva 2447 1  |-  ( om  ~<_  A  ->  A. n  e.  om  E. x ( x  C_  A  /\  x  ~~  n ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1290   E.wex 1427    e. wcel 1439   A.wral 2360   _Vcvv 2620    C_ wss 3000   class class class wbr 3851   Ord word 4198   omcom 4418   ran crn 4452   "cima 4454   -->wf 5024   -1-1->wf1 5025    ~~ cen 6509    ~<_ cdom 6510
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-iinf 4416
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-iord 4202  df-suc 4207  df-iom 4419  df-xp 4457  df-rel 4458  df-cnv 4459  df-co 4460  df-dm 4461  df-rn 4462  df-res 4463  df-ima 4464  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-er 6306  df-en 6512  df-dom 6513
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator