| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ineq1d | GIF version | ||
| Description: Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.) | 
| Ref | Expression | 
|---|---|
| ineq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) | 
| Ref | Expression | 
|---|---|
| ineq1d | ⊢ (𝜑 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ineq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | ineq1 3357 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∩ cin 3156 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 | 
| This theorem is referenced by: diftpsn3 3763 disji2 4026 ordpwsucexmid 4606 riinint 4927 fnresdisj 5368 fnimadisj 5378 ecinxp 6669 fiintim 6992 fival 7036 fzval2 10086 fvinim0ffz 10317 fsum1p 11583 fprod1p 11764 strressid 12749 restopnb 14417 metrest 14742 qtopbasss 14757 | 
| Copyright terms: Public domain | W3C validator |