| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ineq1d | GIF version | ||
| Description: Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.) |
| Ref | Expression |
|---|---|
| ineq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| ineq1d | ⊢ (𝜑 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | ineq1 3398 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∩ cin 3196 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 |
| This theorem is referenced by: diftpsn3 3808 disji2 4074 ordpwsucexmid 4661 riinint 4984 fnresdisj 5432 fnimadisj 5443 ecinxp 6755 fiintim 7089 fival 7133 fzval2 10203 fvinim0ffz 10442 fsum1p 11924 fprod1p 12105 strressid 13099 restopnb 14849 metrest 15174 qtopbasss 15189 |
| Copyright terms: Public domain | W3C validator |