ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum1p Unicode version

Theorem fsum1p 11326
Description: Separate out the first term in a finite sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
fsumm1.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
fsumm1.2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
fsum1p.3  |-  ( k  =  M  ->  A  =  B )
Assertion
Ref Expression
fsum1p  |-  ( ph  -> 
sum_ k  e.  ( M ... N ) A  =  ( B  +  sum_ k  e.  ( ( M  +  1 ) ... N ) A ) )
Distinct variable groups:    B, k    k, M    k, N    ph, k
Allowed substitution hint:    A( k)

Proof of Theorem fsum1p
StepHypRef Expression
1 fsumm1.1 . . . . . . 7  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzel2 9449 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
31, 2syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
4 fzsn 9974 . . . . . 6  |-  ( M  e.  ZZ  ->  ( M ... M )  =  { M } )
53, 4syl 14 . . . . 5  |-  ( ph  ->  ( M ... M
)  =  { M } )
65ineq1d 3308 . . . 4  |-  ( ph  ->  ( ( M ... M )  i^i  (
( M  +  1 ) ... N ) )  =  ( { M }  i^i  (
( M  +  1 ) ... N ) ) )
73zred 9291 . . . . . 6  |-  ( ph  ->  M  e.  RR )
87ltp1d 8806 . . . . 5  |-  ( ph  ->  M  <  ( M  +  1 ) )
9 fzdisj 9960 . . . . 5  |-  ( M  <  ( M  + 
1 )  ->  (
( M ... M
)  i^i  ( ( M  +  1 ) ... N ) )  =  (/) )
108, 9syl 14 . . . 4  |-  ( ph  ->  ( ( M ... M )  i^i  (
( M  +  1 ) ... N ) )  =  (/) )
116, 10eqtr3d 2192 . . 3  |-  ( ph  ->  ( { M }  i^i  ( ( M  + 
1 ) ... N
) )  =  (/) )
12 eluzfz1 9939 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
131, 12syl 14 . . . . 5  |-  ( ph  ->  M  e.  ( M ... N ) )
14 fzsplit 9959 . . . . 5  |-  ( M  e.  ( M ... N )  ->  ( M ... N )  =  ( ( M ... M )  u.  (
( M  +  1 ) ... N ) ) )
1513, 14syl 14 . . . 4  |-  ( ph  ->  ( M ... N
)  =  ( ( M ... M )  u.  ( ( M  +  1 ) ... N ) ) )
165uneq1d 3261 . . . 4  |-  ( ph  ->  ( ( M ... M )  u.  (
( M  +  1 ) ... N ) )  =  ( { M }  u.  (
( M  +  1 ) ... N ) ) )
1715, 16eqtrd 2190 . . 3  |-  ( ph  ->  ( M ... N
)  =  ( { M }  u.  (
( M  +  1 ) ... N ) ) )
18 eluzelz 9453 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
191, 18syl 14 . . . 4  |-  ( ph  ->  N  e.  ZZ )
203, 19fzfigd 10339 . . 3  |-  ( ph  ->  ( M ... N
)  e.  Fin )
21 fsumm1.2 . . 3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
2211, 17, 20, 21fsumsplit 11315 . 2  |-  ( ph  -> 
sum_ k  e.  ( M ... N ) A  =  ( sum_ k  e.  { M } A  +  sum_ k  e.  ( ( M  + 
1 ) ... N
) A ) )
23 fsum1p.3 . . . . . 6  |-  ( k  =  M  ->  A  =  B )
2423eleq1d 2226 . . . . 5  |-  ( k  =  M  ->  ( A  e.  CC  <->  B  e.  CC ) )
2521ralrimiva 2530 . . . . 5  |-  ( ph  ->  A. k  e.  ( M ... N ) A  e.  CC )
2624, 25, 13rspcdva 2821 . . . 4  |-  ( ph  ->  B  e.  CC )
2723sumsn 11319 . . . 4  |-  ( ( M  e.  ZZ  /\  B  e.  CC )  -> 
sum_ k  e.  { M } A  =  B )
283, 26, 27syl2anc 409 . . 3  |-  ( ph  -> 
sum_ k  e.  { M } A  =  B )
2928oveq1d 5841 . 2  |-  ( ph  ->  ( sum_ k  e.  { M } A  +  sum_ k  e.  ( ( M  +  1 ) ... N ) A )  =  ( B  +  sum_ k  e.  ( ( M  +  1 ) ... N ) A ) )
3022, 29eqtrd 2190 1  |-  ( ph  -> 
sum_ k  e.  ( M ... N ) A  =  ( B  +  sum_ k  e.  ( ( M  +  1 ) ... N ) A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335    e. wcel 2128    u. cun 3100    i^i cin 3101   (/)c0 3395   {csn 3561   class class class wbr 3967   ` cfv 5172  (class class class)co 5826   CCcc 7732   1c1 7735    + caddc 7737    < clt 7914   ZZcz 9172   ZZ>=cuz 9444   ...cfz 9918   sum_csu 11261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4081  ax-sep 4084  ax-nul 4092  ax-pow 4137  ax-pr 4171  ax-un 4395  ax-setind 4498  ax-iinf 4549  ax-cnex 7825  ax-resscn 7826  ax-1cn 7827  ax-1re 7828  ax-icn 7829  ax-addcl 7830  ax-addrcl 7831  ax-mulcl 7832  ax-mulrcl 7833  ax-addcom 7834  ax-mulcom 7835  ax-addass 7836  ax-mulass 7837  ax-distr 7838  ax-i2m1 7839  ax-0lt1 7840  ax-1rid 7841  ax-0id 7842  ax-rnegex 7843  ax-precex 7844  ax-cnre 7845  ax-pre-ltirr 7846  ax-pre-ltwlin 7847  ax-pre-lttrn 7848  ax-pre-apti 7849  ax-pre-ltadd 7850  ax-pre-mulgt0 7851  ax-pre-mulext 7852  ax-arch 7853  ax-caucvg 7854
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-if 3507  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4028  df-mpt 4029  df-tr 4065  df-id 4255  df-po 4258  df-iso 4259  df-iord 4328  df-on 4330  df-ilim 4331  df-suc 4333  df-iom 4552  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-iota 5137  df-fun 5174  df-fn 5175  df-f 5176  df-f1 5177  df-fo 5178  df-f1o 5179  df-fv 5180  df-isom 5181  df-riota 5782  df-ov 5829  df-oprab 5830  df-mpo 5831  df-1st 6090  df-2nd 6091  df-recs 6254  df-irdg 6319  df-frec 6340  df-1o 6365  df-oadd 6369  df-er 6482  df-en 6688  df-dom 6689  df-fin 6690  df-pnf 7916  df-mnf 7917  df-xr 7918  df-ltxr 7919  df-le 7920  df-sub 8052  df-neg 8053  df-reap 8454  df-ap 8461  df-div 8550  df-inn 8839  df-2 8897  df-3 8898  df-4 8899  df-n0 9096  df-z 9173  df-uz 9445  df-q 9535  df-rp 9567  df-fz 9919  df-fzo 10051  df-seqfrec 10354  df-exp 10428  df-ihash 10661  df-cj 10753  df-re 10754  df-im 10755  df-rsqrt 10909  df-abs 10910  df-clim 11187  df-sumdc 11262
This theorem is referenced by:  telfsumo  11374  fsumparts  11378  arisum2  11407
  Copyright terms: Public domain W3C validator