ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum1p Unicode version

Theorem fsum1p 11219
Description: Separate out the first term in a finite sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
fsumm1.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
fsumm1.2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
fsum1p.3  |-  ( k  =  M  ->  A  =  B )
Assertion
Ref Expression
fsum1p  |-  ( ph  -> 
sum_ k  e.  ( M ... N ) A  =  ( B  +  sum_ k  e.  ( ( M  +  1 ) ... N ) A ) )
Distinct variable groups:    B, k    k, M    k, N    ph, k
Allowed substitution hint:    A( k)

Proof of Theorem fsum1p
StepHypRef Expression
1 fsumm1.1 . . . . . . 7  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzel2 9355 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
31, 2syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
4 fzsn 9877 . . . . . 6  |-  ( M  e.  ZZ  ->  ( M ... M )  =  { M } )
53, 4syl 14 . . . . 5  |-  ( ph  ->  ( M ... M
)  =  { M } )
65ineq1d 3281 . . . 4  |-  ( ph  ->  ( ( M ... M )  i^i  (
( M  +  1 ) ... N ) )  =  ( { M }  i^i  (
( M  +  1 ) ... N ) ) )
73zred 9197 . . . . . 6  |-  ( ph  ->  M  e.  RR )
87ltp1d 8712 . . . . 5  |-  ( ph  ->  M  <  ( M  +  1 ) )
9 fzdisj 9863 . . . . 5  |-  ( M  <  ( M  + 
1 )  ->  (
( M ... M
)  i^i  ( ( M  +  1 ) ... N ) )  =  (/) )
108, 9syl 14 . . . 4  |-  ( ph  ->  ( ( M ... M )  i^i  (
( M  +  1 ) ... N ) )  =  (/) )
116, 10eqtr3d 2175 . . 3  |-  ( ph  ->  ( { M }  i^i  ( ( M  + 
1 ) ... N
) )  =  (/) )
12 eluzfz1 9842 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
131, 12syl 14 . . . . 5  |-  ( ph  ->  M  e.  ( M ... N ) )
14 fzsplit 9862 . . . . 5  |-  ( M  e.  ( M ... N )  ->  ( M ... N )  =  ( ( M ... M )  u.  (
( M  +  1 ) ... N ) ) )
1513, 14syl 14 . . . 4  |-  ( ph  ->  ( M ... N
)  =  ( ( M ... M )  u.  ( ( M  +  1 ) ... N ) ) )
165uneq1d 3234 . . . 4  |-  ( ph  ->  ( ( M ... M )  u.  (
( M  +  1 ) ... N ) )  =  ( { M }  u.  (
( M  +  1 ) ... N ) ) )
1715, 16eqtrd 2173 . . 3  |-  ( ph  ->  ( M ... N
)  =  ( { M }  u.  (
( M  +  1 ) ... N ) ) )
18 eluzelz 9359 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
191, 18syl 14 . . . 4  |-  ( ph  ->  N  e.  ZZ )
203, 19fzfigd 10235 . . 3  |-  ( ph  ->  ( M ... N
)  e.  Fin )
21 fsumm1.2 . . 3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
2211, 17, 20, 21fsumsplit 11208 . 2  |-  ( ph  -> 
sum_ k  e.  ( M ... N ) A  =  ( sum_ k  e.  { M } A  +  sum_ k  e.  ( ( M  + 
1 ) ... N
) A ) )
23 fsum1p.3 . . . . . 6  |-  ( k  =  M  ->  A  =  B )
2423eleq1d 2209 . . . . 5  |-  ( k  =  M  ->  ( A  e.  CC  <->  B  e.  CC ) )
2521ralrimiva 2508 . . . . 5  |-  ( ph  ->  A. k  e.  ( M ... N ) A  e.  CC )
2624, 25, 13rspcdva 2798 . . . 4  |-  ( ph  ->  B  e.  CC )
2723sumsn 11212 . . . 4  |-  ( ( M  e.  ZZ  /\  B  e.  CC )  -> 
sum_ k  e.  { M } A  =  B )
283, 26, 27syl2anc 409 . . 3  |-  ( ph  -> 
sum_ k  e.  { M } A  =  B )
2928oveq1d 5797 . 2  |-  ( ph  ->  ( sum_ k  e.  { M } A  +  sum_ k  e.  ( ( M  +  1 ) ... N ) A )  =  ( B  +  sum_ k  e.  ( ( M  +  1 ) ... N ) A ) )
3022, 29eqtrd 2173 1  |-  ( ph  -> 
sum_ k  e.  ( M ... N ) A  =  ( B  +  sum_ k  e.  ( ( M  +  1 ) ... N ) A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481    u. cun 3074    i^i cin 3075   (/)c0 3368   {csn 3532   class class class wbr 3937   ` cfv 5131  (class class class)co 5782   CCcc 7642   1c1 7645    + caddc 7647    < clt 7824   ZZcz 9078   ZZ>=cuz 9350   ...cfz 9821   sum_csu 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-ihash 10554  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155
This theorem is referenced by:  telfsumo  11267  fsumparts  11271  arisum2  11300
  Copyright terms: Public domain W3C validator