ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strressid Unicode version

Theorem strressid 12903
Description: Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Jim Kingdon, 17-Jan-2025.)
Hypotheses
Ref Expression
strressid.b  |-  ( ph  ->  B  =  ( Base `  W ) )
strressid.s  |-  ( ph  ->  W Struct  <. M ,  N >. )
strressid.f  |-  ( ph  ->  Fun  W )
strressid.bw  |-  ( ph  ->  ( Base `  ndx )  e.  dom  W )
Assertion
Ref Expression
strressid  |-  ( ph  ->  ( Ws  B )  =  W )

Proof of Theorem strressid
StepHypRef Expression
1 strressid.b . . . . . 6  |-  ( ph  ->  B  =  ( Base `  W ) )
21ineq1d 3373 . . . . 5  |-  ( ph  ->  ( B  i^i  ( Base `  W ) )  =  ( ( Base `  W )  i^i  ( Base `  W ) ) )
3 inidm 3382 . . . . 5  |-  ( (
Base `  W )  i^i  ( Base `  W
) )  =  (
Base `  W )
42, 3eqtrdi 2254 . . . 4  |-  ( ph  ->  ( B  i^i  ( Base `  W ) )  =  ( Base `  W
) )
54opeq2d 3826 . . 3  |-  ( ph  -> 
<. ( Base `  ndx ) ,  ( B  i^i  ( Base `  W
) ) >.  =  <. (
Base `  ndx ) ,  ( Base `  W
) >. )
65oveq2d 5960 . 2  |-  ( ph  ->  ( W sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  W ) )
>. )  =  ( W sSet  <. ( Base `  ndx ) ,  ( Base `  W ) >. )
)
7 strressid.s . . . 4  |-  ( ph  ->  W Struct  <. M ,  N >. )
8 structex 12844 . . . 4  |-  ( W Struct  <. M ,  N >.  ->  W  e.  _V )
97, 8syl 14 . . 3  |-  ( ph  ->  W  e.  _V )
10 basfn 12890 . . . . 5  |-  Base  Fn  _V
11 funfvex 5593 . . . . . 6  |-  ( ( Fun  Base  /\  W  e. 
dom  Base )  ->  ( Base `  W )  e. 
_V )
1211funfni 5376 . . . . 5  |-  ( (
Base  Fn  _V  /\  W  e.  _V )  ->  ( Base `  W )  e. 
_V )
1310, 9, 12sylancr 414 . . . 4  |-  ( ph  ->  ( Base `  W
)  e.  _V )
141, 13eqeltrd 2282 . . 3  |-  ( ph  ->  B  e.  _V )
15 ressvalsets 12896 . . 3  |-  ( ( W  e.  _V  /\  B  e.  _V )  ->  ( Ws  B )  =  ( W sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  W
) ) >. )
)
169, 14, 15syl2anc 411 . 2  |-  ( ph  ->  ( Ws  B )  =  ( W sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  W
) ) >. )
)
17 baseid 12886 . . 3  |-  Base  = Slot  ( Base `  ndx )
18 strressid.f . . 3  |-  ( ph  ->  Fun  W )
19 strressid.bw . . 3  |-  ( ph  ->  ( Base `  ndx )  e.  dom  W )
2017, 7, 18, 19strsetsid 12865 . 2  |-  ( ph  ->  W  =  ( W sSet  <. ( Base `  ndx ) ,  ( Base `  W ) >. )
)
216, 16, 203eqtr4d 2248 1  |-  ( ph  ->  ( Ws  B )  =  W )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   _Vcvv 2772    i^i cin 3165   <.cop 3636   class class class wbr 4044   dom cdm 4675   Fun wfun 5265    Fn wfn 5266   ` cfv 5271  (class class class)co 5944   Struct cstr 12828   ndxcnx 12829   sSet csts 12830   Basecbs 12832   ↾s cress 12833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-fz 10131  df-struct 12834  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator