ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strressid Unicode version

Theorem strressid 12692
Description: Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Jim Kingdon, 17-Jan-2025.)
Hypotheses
Ref Expression
strressid.b  |-  ( ph  ->  B  =  ( Base `  W ) )
strressid.s  |-  ( ph  ->  W Struct  <. M ,  N >. )
strressid.f  |-  ( ph  ->  Fun  W )
strressid.bw  |-  ( ph  ->  ( Base `  ndx )  e.  dom  W )
Assertion
Ref Expression
strressid  |-  ( ph  ->  ( Ws  B )  =  W )

Proof of Theorem strressid
StepHypRef Expression
1 strressid.b . . . . . 6  |-  ( ph  ->  B  =  ( Base `  W ) )
21ineq1d 3360 . . . . 5  |-  ( ph  ->  ( B  i^i  ( Base `  W ) )  =  ( ( Base `  W )  i^i  ( Base `  W ) ) )
3 inidm 3369 . . . . 5  |-  ( (
Base `  W )  i^i  ( Base `  W
) )  =  (
Base `  W )
42, 3eqtrdi 2242 . . . 4  |-  ( ph  ->  ( B  i^i  ( Base `  W ) )  =  ( Base `  W
) )
54opeq2d 3812 . . 3  |-  ( ph  -> 
<. ( Base `  ndx ) ,  ( B  i^i  ( Base `  W
) ) >.  =  <. (
Base `  ndx ) ,  ( Base `  W
) >. )
65oveq2d 5935 . 2  |-  ( ph  ->  ( W sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  W ) )
>. )  =  ( W sSet  <. ( Base `  ndx ) ,  ( Base `  W ) >. )
)
7 strressid.s . . . 4  |-  ( ph  ->  W Struct  <. M ,  N >. )
8 structex 12633 . . . 4  |-  ( W Struct  <. M ,  N >.  ->  W  e.  _V )
97, 8syl 14 . . 3  |-  ( ph  ->  W  e.  _V )
10 basfn 12679 . . . . 5  |-  Base  Fn  _V
11 funfvex 5572 . . . . . 6  |-  ( ( Fun  Base  /\  W  e. 
dom  Base )  ->  ( Base `  W )  e. 
_V )
1211funfni 5355 . . . . 5  |-  ( (
Base  Fn  _V  /\  W  e.  _V )  ->  ( Base `  W )  e. 
_V )
1310, 9, 12sylancr 414 . . . 4  |-  ( ph  ->  ( Base `  W
)  e.  _V )
141, 13eqeltrd 2270 . . 3  |-  ( ph  ->  B  e.  _V )
15 ressvalsets 12685 . . 3  |-  ( ( W  e.  _V  /\  B  e.  _V )  ->  ( Ws  B )  =  ( W sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  W
) ) >. )
)
169, 14, 15syl2anc 411 . 2  |-  ( ph  ->  ( Ws  B )  =  ( W sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  W
) ) >. )
)
17 baseid 12675 . . 3  |-  Base  = Slot  ( Base `  ndx )
18 strressid.f . . 3  |-  ( ph  ->  Fun  W )
19 strressid.bw . . 3  |-  ( ph  ->  ( Base `  ndx )  e.  dom  W )
2017, 7, 18, 19strsetsid 12654 . 2  |-  ( ph  ->  W  =  ( W sSet  <. ( Base `  ndx ) ,  ( Base `  W ) >. )
)
216, 16, 203eqtr4d 2236 1  |-  ( ph  ->  ( Ws  B )  =  W )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   _Vcvv 2760    i^i cin 3153   <.cop 3622   class class class wbr 4030   dom cdm 4660   Fun wfun 5249    Fn wfn 5250   ` cfv 5255  (class class class)co 5919   Struct cstr 12617   ndxcnx 12618   sSet csts 12619   Basecbs 12621   ↾s cress 12622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-fz 10078  df-struct 12623  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator