ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strressid Unicode version

Theorem strressid 13018
Description: Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Jim Kingdon, 17-Jan-2025.)
Hypotheses
Ref Expression
strressid.b  |-  ( ph  ->  B  =  ( Base `  W ) )
strressid.s  |-  ( ph  ->  W Struct  <. M ,  N >. )
strressid.f  |-  ( ph  ->  Fun  W )
strressid.bw  |-  ( ph  ->  ( Base `  ndx )  e.  dom  W )
Assertion
Ref Expression
strressid  |-  ( ph  ->  ( Ws  B )  =  W )

Proof of Theorem strressid
StepHypRef Expression
1 strressid.b . . . . . 6  |-  ( ph  ->  B  =  ( Base `  W ) )
21ineq1d 3381 . . . . 5  |-  ( ph  ->  ( B  i^i  ( Base `  W ) )  =  ( ( Base `  W )  i^i  ( Base `  W ) ) )
3 inidm 3390 . . . . 5  |-  ( (
Base `  W )  i^i  ( Base `  W
) )  =  (
Base `  W )
42, 3eqtrdi 2256 . . . 4  |-  ( ph  ->  ( B  i^i  ( Base `  W ) )  =  ( Base `  W
) )
54opeq2d 3840 . . 3  |-  ( ph  -> 
<. ( Base `  ndx ) ,  ( B  i^i  ( Base `  W
) ) >.  =  <. (
Base `  ndx ) ,  ( Base `  W
) >. )
65oveq2d 5983 . 2  |-  ( ph  ->  ( W sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  W ) )
>. )  =  ( W sSet  <. ( Base `  ndx ) ,  ( Base `  W ) >. )
)
7 strressid.s . . . 4  |-  ( ph  ->  W Struct  <. M ,  N >. )
8 structex 12959 . . . 4  |-  ( W Struct  <. M ,  N >.  ->  W  e.  _V )
97, 8syl 14 . . 3  |-  ( ph  ->  W  e.  _V )
10 basfn 13005 . . . . 5  |-  Base  Fn  _V
11 funfvex 5616 . . . . . 6  |-  ( ( Fun  Base  /\  W  e. 
dom  Base )  ->  ( Base `  W )  e. 
_V )
1211funfni 5395 . . . . 5  |-  ( (
Base  Fn  _V  /\  W  e.  _V )  ->  ( Base `  W )  e. 
_V )
1310, 9, 12sylancr 414 . . . 4  |-  ( ph  ->  ( Base `  W
)  e.  _V )
141, 13eqeltrd 2284 . . 3  |-  ( ph  ->  B  e.  _V )
15 ressvalsets 13011 . . 3  |-  ( ( W  e.  _V  /\  B  e.  _V )  ->  ( Ws  B )  =  ( W sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  W
) ) >. )
)
169, 14, 15syl2anc 411 . 2  |-  ( ph  ->  ( Ws  B )  =  ( W sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  W
) ) >. )
)
17 baseid 13001 . . 3  |-  Base  = Slot  ( Base `  ndx )
18 strressid.f . . 3  |-  ( ph  ->  Fun  W )
19 strressid.bw . . 3  |-  ( ph  ->  ( Base `  ndx )  e.  dom  W )
2017, 7, 18, 19strsetsid 12980 . 2  |-  ( ph  ->  W  =  ( W sSet  <. ( Base `  ndx ) ,  ( Base `  W ) >. )
)
216, 16, 203eqtr4d 2250 1  |-  ( ph  ->  ( Ws  B )  =  W )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   _Vcvv 2776    i^i cin 3173   <.cop 3646   class class class wbr 4059   dom cdm 4693   Fun wfun 5284    Fn wfn 5285   ` cfv 5290  (class class class)co 5967   Struct cstr 12943   ndxcnx 12944   sSet csts 12945   Basecbs 12947   ↾s cress 12948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166  df-struct 12949  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator