ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strressid Unicode version

Theorem strressid 13104
Description: Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Jim Kingdon, 17-Jan-2025.)
Hypotheses
Ref Expression
strressid.b  |-  ( ph  ->  B  =  ( Base `  W ) )
strressid.s  |-  ( ph  ->  W Struct  <. M ,  N >. )
strressid.f  |-  ( ph  ->  Fun  W )
strressid.bw  |-  ( ph  ->  ( Base `  ndx )  e.  dom  W )
Assertion
Ref Expression
strressid  |-  ( ph  ->  ( Ws  B )  =  W )

Proof of Theorem strressid
StepHypRef Expression
1 strressid.b . . . . . 6  |-  ( ph  ->  B  =  ( Base `  W ) )
21ineq1d 3404 . . . . 5  |-  ( ph  ->  ( B  i^i  ( Base `  W ) )  =  ( ( Base `  W )  i^i  ( Base `  W ) ) )
3 inidm 3413 . . . . 5  |-  ( (
Base `  W )  i^i  ( Base `  W
) )  =  (
Base `  W )
42, 3eqtrdi 2278 . . . 4  |-  ( ph  ->  ( B  i^i  ( Base `  W ) )  =  ( Base `  W
) )
54opeq2d 3864 . . 3  |-  ( ph  -> 
<. ( Base `  ndx ) ,  ( B  i^i  ( Base `  W
) ) >.  =  <. (
Base `  ndx ) ,  ( Base `  W
) >. )
65oveq2d 6017 . 2  |-  ( ph  ->  ( W sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  W ) )
>. )  =  ( W sSet  <. ( Base `  ndx ) ,  ( Base `  W ) >. )
)
7 strressid.s . . . 4  |-  ( ph  ->  W Struct  <. M ,  N >. )
8 structex 13044 . . . 4  |-  ( W Struct  <. M ,  N >.  ->  W  e.  _V )
97, 8syl 14 . . 3  |-  ( ph  ->  W  e.  _V )
10 basfn 13091 . . . . 5  |-  Base  Fn  _V
11 funfvex 5644 . . . . . 6  |-  ( ( Fun  Base  /\  W  e. 
dom  Base )  ->  ( Base `  W )  e. 
_V )
1211funfni 5423 . . . . 5  |-  ( (
Base  Fn  _V  /\  W  e.  _V )  ->  ( Base `  W )  e. 
_V )
1310, 9, 12sylancr 414 . . . 4  |-  ( ph  ->  ( Base `  W
)  e.  _V )
141, 13eqeltrd 2306 . . 3  |-  ( ph  ->  B  e.  _V )
15 ressvalsets 13097 . . 3  |-  ( ( W  e.  _V  /\  B  e.  _V )  ->  ( Ws  B )  =  ( W sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  W
) ) >. )
)
169, 14, 15syl2anc 411 . 2  |-  ( ph  ->  ( Ws  B )  =  ( W sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  W
) ) >. )
)
17 baseid 13086 . . 3  |-  Base  = Slot  ( Base `  ndx )
18 strressid.f . . 3  |-  ( ph  ->  Fun  W )
19 strressid.bw . . 3  |-  ( ph  ->  ( Base `  ndx )  e.  dom  W )
2017, 7, 18, 19strsetsid 13065 . 2  |-  ( ph  ->  W  =  ( W sSet  <. ( Base `  ndx ) ,  ( Base `  W ) >. )
)
216, 16, 203eqtr4d 2272 1  |-  ( ph  ->  ( Ws  B )  =  W )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   _Vcvv 2799    i^i cin 3196   <.cop 3669   class class class wbr 4083   dom cdm 4719   Fun wfun 5312    Fn wfn 5313   ` cfv 5318  (class class class)co 6001   Struct cstr 13028   ndxcnx 13029   sSet csts 13030   Basecbs 13032   ↾s cress 13033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205  df-struct 13034  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-iress 13040
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator