ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infmoti Unicode version

Theorem infmoti 6702
Description: Any class  B has at most one infimum in  A (where  R is interpreted as 'less than'). (Contributed by Jim Kingdon, 18-Dec-2021.)
Hypothesis
Ref Expression
infmoti.ti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
Assertion
Ref Expression
infmoti  |-  ( ph  ->  E* x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )
Distinct variable groups:    v, u, x, y, z, A    u, R, v, x, y, z   
u, B, v, x, y, z    ph, u, v, x
Allowed substitution hints:    ph( y, z)

Proof of Theorem infmoti
StepHypRef Expression
1 infmoti.ti . . . 4  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
21cnvti 6693 . . 3  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u `' R v  /\  -.  v `' R u ) ) )
32supmoti 6667 . 2  |-  ( ph  ->  E* x  e.  A  ( A. y  e.  B  -.  x `' R y  /\  A. y  e.  A  ( y `' R x  ->  E. z  e.  B  y `' R z ) ) )
4 vex 2622 . . . . . . 7  |-  x  e. 
_V
5 vex 2622 . . . . . . 7  |-  y  e. 
_V
64, 5brcnv 4607 . . . . . 6  |-  ( x `' R y  <->  y R x )
76notbii 629 . . . . 5  |-  ( -.  x `' R y  <->  -.  y R x )
87ralbii 2384 . . . 4  |-  ( A. y  e.  B  -.  x `' R y  <->  A. y  e.  B  -.  y R x )
95, 4brcnv 4607 . . . . . 6  |-  ( y `' R x  <->  x R
y )
10 vex 2622 . . . . . . . 8  |-  z  e. 
_V
115, 10brcnv 4607 . . . . . . 7  |-  ( y `' R z  <->  z R
y )
1211rexbii 2385 . . . . . 6  |-  ( E. z  e.  B  y `' R z  <->  E. z  e.  B  z R
y )
139, 12imbi12i 237 . . . . 5  |-  ( ( y `' R x  ->  E. z  e.  B  y `' R z )  <->  ( x R y  ->  E. z  e.  B  z R
y ) )
1413ralbii 2384 . . . 4  |-  ( A. y  e.  A  (
y `' R x  ->  E. z  e.  B  y `' R z )  <->  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R
y ) )
158, 14anbi12i 448 . . 3  |-  ( ( A. y  e.  B  -.  x `' R y  /\  A. y  e.  A  ( y `' R x  ->  E. z  e.  B  y `' R z ) )  <-> 
( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R
y ) ) )
1615rmobii 2557 . 2  |-  ( E* x  e.  A  ( A. y  e.  B  -.  x `' R y  /\  A. y  e.  A  ( y `' R x  ->  E. z  e.  B  y `' R z ) )  <->  E* x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )
173, 16sylib 120 1  |-  ( ph  ->  E* x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    e. wcel 1438   A.wral 2359   E.wrex 2360   E*wrmo 2362   class class class wbr 3837   `'ccnv 4427
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-rmo 2367  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-br 3838  df-opab 3892  df-cnv 4436
This theorem is referenced by:  infeuti  6703
  Copyright terms: Public domain W3C validator