ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infmoti Unicode version

Theorem infmoti 6993
Description: Any class  B has at most one infimum in  A (where  R is interpreted as 'less than'). (Contributed by Jim Kingdon, 18-Dec-2021.)
Hypothesis
Ref Expression
infmoti.ti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
Assertion
Ref Expression
infmoti  |-  ( ph  ->  E* x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )
Distinct variable groups:    v, u, x, y, z, A    u, R, v, x, y, z   
u, B, v, x, y, z    ph, u, v, x
Allowed substitution hints:    ph( y, z)

Proof of Theorem infmoti
StepHypRef Expression
1 infmoti.ti . . . 4  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
21cnvti 6984 . . 3  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u `' R v  /\  -.  v `' R u ) ) )
32supmoti 6958 . 2  |-  ( ph  ->  E* x  e.  A  ( A. y  e.  B  -.  x `' R y  /\  A. y  e.  A  ( y `' R x  ->  E. z  e.  B  y `' R z ) ) )
4 vex 2729 . . . . . . 7  |-  x  e. 
_V
5 vex 2729 . . . . . . 7  |-  y  e. 
_V
64, 5brcnv 4787 . . . . . 6  |-  ( x `' R y  <->  y R x )
76notbii 658 . . . . 5  |-  ( -.  x `' R y  <->  -.  y R x )
87ralbii 2472 . . . 4  |-  ( A. y  e.  B  -.  x `' R y  <->  A. y  e.  B  -.  y R x )
95, 4brcnv 4787 . . . . . 6  |-  ( y `' R x  <->  x R
y )
10 vex 2729 . . . . . . . 8  |-  z  e. 
_V
115, 10brcnv 4787 . . . . . . 7  |-  ( y `' R z  <->  z R
y )
1211rexbii 2473 . . . . . 6  |-  ( E. z  e.  B  y `' R z  <->  E. z  e.  B  z R
y )
139, 12imbi12i 238 . . . . 5  |-  ( ( y `' R x  ->  E. z  e.  B  y `' R z )  <->  ( x R y  ->  E. z  e.  B  z R
y ) )
1413ralbii 2472 . . . 4  |-  ( A. y  e.  A  (
y `' R x  ->  E. z  e.  B  y `' R z )  <->  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R
y ) )
158, 14anbi12i 456 . . 3  |-  ( ( A. y  e.  B  -.  x `' R y  /\  A. y  e.  A  ( y `' R x  ->  E. z  e.  B  y `' R z ) )  <-> 
( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R
y ) ) )
1615rmobii 2656 . 2  |-  ( E* x  e.  A  ( A. y  e.  B  -.  x `' R y  /\  A. y  e.  A  ( y `' R x  ->  E. z  e.  B  y `' R z ) )  <->  E* x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )
173, 16sylib 121 1  |-  ( ph  ->  E* x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2136   A.wral 2444   E.wrex 2445   E*wrmo 2447   class class class wbr 3982   `'ccnv 4603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rmo 2452  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-cnv 4612
This theorem is referenced by:  infeuti  6994
  Copyright terms: Public domain W3C validator