ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subcmnd Unicode version

Theorem subcmnd 13865
Description: A submonoid of a commutative monoid is also commutative. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
subcmnd.h  |-  ( ph  ->  H  =  ( Gs  S ) )
subcmnd.g  |-  ( ph  ->  G  e. CMnd )
subcmnd.m  |-  ( ph  ->  H  e.  Mnd )
subcmnd.s  |-  ( ph  ->  S  e.  V )
Assertion
Ref Expression
subcmnd  |-  ( ph  ->  H  e. CMnd )

Proof of Theorem subcmnd
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2230 . 2  |-  ( ph  ->  ( Base `  H
)  =  ( Base `  H ) )
2 subcmnd.h . . 3  |-  ( ph  ->  H  =  ( Gs  S ) )
3 eqidd 2230 . . 3  |-  ( ph  ->  ( +g  `  G
)  =  ( +g  `  G ) )
4 subcmnd.s . . 3  |-  ( ph  ->  S  e.  V )
5 subcmnd.g . . 3  |-  ( ph  ->  G  e. CMnd )
62, 3, 4, 5ressplusgd 13157 . 2  |-  ( ph  ->  ( +g  `  G
)  =  ( +g  `  H ) )
7 subcmnd.m . 2  |-  ( ph  ->  H  e.  Mnd )
853ad2ant1 1042 . . 3  |-  ( (
ph  /\  x  e.  ( Base `  H )  /\  y  e.  ( Base `  H ) )  ->  G  e. CMnd )
9 eqidd 2230 . . . . . 6  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  G ) )
102, 9, 5, 4ressbasssd 13097 . . . . 5  |-  ( ph  ->  ( Base `  H
)  C_  ( Base `  G ) )
1110sselda 3224 . . . 4  |-  ( (
ph  /\  x  e.  ( Base `  H )
)  ->  x  e.  ( Base `  G )
)
12113adant3 1041 . . 3  |-  ( (
ph  /\  x  e.  ( Base `  H )  /\  y  e.  ( Base `  H ) )  ->  x  e.  (
Base `  G )
)
1310sselda 3224 . . . 4  |-  ( (
ph  /\  y  e.  ( Base `  H )
)  ->  y  e.  ( Base `  G )
)
14133adant2 1040 . . 3  |-  ( (
ph  /\  x  e.  ( Base `  H )  /\  y  e.  ( Base `  H ) )  ->  y  e.  (
Base `  G )
)
15 eqid 2229 . . . 4  |-  ( Base `  G )  =  (
Base `  G )
16 eqid 2229 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
1715, 16cmncom 13834 . . 3  |-  ( ( G  e. CMnd  /\  x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
)  ->  ( x
( +g  `  G ) y )  =  ( y ( +g  `  G
) x ) )
188, 12, 14, 17syl3anc 1271 . 2  |-  ( (
ph  /\  x  e.  ( Base `  H )  /\  y  e.  ( Base `  H ) )  ->  ( x ( +g  `  G ) y )  =  ( y ( +g  `  G
) x ) )
191, 6, 7, 18iscmnd 13830 1  |-  ( ph  ->  H  e. CMnd )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 1002    = wceq 1395    e. wcel 2200   ` cfv 5317  (class class class)co 6000   Basecbs 13027   ↾s cress 13028   +g cplusg 13105   Mndcmnd 13444  CMndccmn 13816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035  df-plusg 13118  df-cmn 13818
This theorem is referenced by:  unitabl  14075  subrgcrng  14183
  Copyright terms: Public domain W3C validator