ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subcmnd Unicode version

Theorem subcmnd 13784
Description: A submonoid of a commutative monoid is also commutative. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
subcmnd.h  |-  ( ph  ->  H  =  ( Gs  S ) )
subcmnd.g  |-  ( ph  ->  G  e. CMnd )
subcmnd.m  |-  ( ph  ->  H  e.  Mnd )
subcmnd.s  |-  ( ph  ->  S  e.  V )
Assertion
Ref Expression
subcmnd  |-  ( ph  ->  H  e. CMnd )

Proof of Theorem subcmnd
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2208 . 2  |-  ( ph  ->  ( Base `  H
)  =  ( Base `  H ) )
2 subcmnd.h . . 3  |-  ( ph  ->  H  =  ( Gs  S ) )
3 eqidd 2208 . . 3  |-  ( ph  ->  ( +g  `  G
)  =  ( +g  `  G ) )
4 subcmnd.s . . 3  |-  ( ph  ->  S  e.  V )
5 subcmnd.g . . 3  |-  ( ph  ->  G  e. CMnd )
62, 3, 4, 5ressplusgd 13076 . 2  |-  ( ph  ->  ( +g  `  G
)  =  ( +g  `  H ) )
7 subcmnd.m . 2  |-  ( ph  ->  H  e.  Mnd )
853ad2ant1 1021 . . 3  |-  ( (
ph  /\  x  e.  ( Base `  H )  /\  y  e.  ( Base `  H ) )  ->  G  e. CMnd )
9 eqidd 2208 . . . . . 6  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  G ) )
102, 9, 5, 4ressbasssd 13016 . . . . 5  |-  ( ph  ->  ( Base `  H
)  C_  ( Base `  G ) )
1110sselda 3201 . . . 4  |-  ( (
ph  /\  x  e.  ( Base `  H )
)  ->  x  e.  ( Base `  G )
)
12113adant3 1020 . . 3  |-  ( (
ph  /\  x  e.  ( Base `  H )  /\  y  e.  ( Base `  H ) )  ->  x  e.  (
Base `  G )
)
1310sselda 3201 . . . 4  |-  ( (
ph  /\  y  e.  ( Base `  H )
)  ->  y  e.  ( Base `  G )
)
14133adant2 1019 . . 3  |-  ( (
ph  /\  x  e.  ( Base `  H )  /\  y  e.  ( Base `  H ) )  ->  y  e.  (
Base `  G )
)
15 eqid 2207 . . . 4  |-  ( Base `  G )  =  (
Base `  G )
16 eqid 2207 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
1715, 16cmncom 13753 . . 3  |-  ( ( G  e. CMnd  /\  x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
)  ->  ( x
( +g  `  G ) y )  =  ( y ( +g  `  G
) x ) )
188, 12, 14, 17syl3anc 1250 . 2  |-  ( (
ph  /\  x  e.  ( Base `  H )  /\  y  e.  ( Base `  H ) )  ->  ( x ( +g  `  G ) y )  =  ( y ( +g  `  G
) x ) )
191, 6, 7, 18iscmnd 13749 1  |-  ( ph  ->  H  e. CMnd )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981    = wceq 1373    e. wcel 2178   ` cfv 5290  (class class class)co 5967   Basecbs 12947   ↾s cress 12948   +g cplusg 13024   Mndcmnd 13363  CMndccmn 13735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955  df-plusg 13037  df-cmn 13737
This theorem is referenced by:  unitabl  13994  subrgcrng  14102
  Copyright terms: Public domain W3C validator