ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subcmnd Unicode version

Theorem subcmnd 13640
Description: A submonoid of a commutative monoid is also commutative. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
subcmnd.h  |-  ( ph  ->  H  =  ( Gs  S ) )
subcmnd.g  |-  ( ph  ->  G  e. CMnd )
subcmnd.m  |-  ( ph  ->  H  e.  Mnd )
subcmnd.s  |-  ( ph  ->  S  e.  V )
Assertion
Ref Expression
subcmnd  |-  ( ph  ->  H  e. CMnd )

Proof of Theorem subcmnd
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2205 . 2  |-  ( ph  ->  ( Base `  H
)  =  ( Base `  H ) )
2 subcmnd.h . . 3  |-  ( ph  ->  H  =  ( Gs  S ) )
3 eqidd 2205 . . 3  |-  ( ph  ->  ( +g  `  G
)  =  ( +g  `  G ) )
4 subcmnd.s . . 3  |-  ( ph  ->  S  e.  V )
5 subcmnd.g . . 3  |-  ( ph  ->  G  e. CMnd )
62, 3, 4, 5ressplusgd 12932 . 2  |-  ( ph  ->  ( +g  `  G
)  =  ( +g  `  H ) )
7 subcmnd.m . 2  |-  ( ph  ->  H  e.  Mnd )
853ad2ant1 1020 . . 3  |-  ( (
ph  /\  x  e.  ( Base `  H )  /\  y  e.  ( Base `  H ) )  ->  G  e. CMnd )
9 eqidd 2205 . . . . . 6  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  G ) )
102, 9, 5, 4ressbasssd 12872 . . . . 5  |-  ( ph  ->  ( Base `  H
)  C_  ( Base `  G ) )
1110sselda 3192 . . . 4  |-  ( (
ph  /\  x  e.  ( Base `  H )
)  ->  x  e.  ( Base `  G )
)
12113adant3 1019 . . 3  |-  ( (
ph  /\  x  e.  ( Base `  H )  /\  y  e.  ( Base `  H ) )  ->  x  e.  (
Base `  G )
)
1310sselda 3192 . . . 4  |-  ( (
ph  /\  y  e.  ( Base `  H )
)  ->  y  e.  ( Base `  G )
)
14133adant2 1018 . . 3  |-  ( (
ph  /\  x  e.  ( Base `  H )  /\  y  e.  ( Base `  H ) )  ->  y  e.  (
Base `  G )
)
15 eqid 2204 . . . 4  |-  ( Base `  G )  =  (
Base `  G )
16 eqid 2204 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
1715, 16cmncom 13609 . . 3  |-  ( ( G  e. CMnd  /\  x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
)  ->  ( x
( +g  `  G ) y )  =  ( y ( +g  `  G
) x ) )
188, 12, 14, 17syl3anc 1249 . 2  |-  ( (
ph  /\  x  e.  ( Base `  H )  /\  y  e.  ( Base `  H ) )  ->  ( x ( +g  `  G ) y )  =  ( y ( +g  `  G
) x ) )
191, 6, 7, 18iscmnd 13605 1  |-  ( ph  ->  H  e. CMnd )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    = wceq 1372    e. wcel 2175   ` cfv 5270  (class class class)co 5943   Basecbs 12803   ↾s cress 12804   +g cplusg 12880   Mndcmnd 13219  CMndccmn 13591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-ndx 12806  df-slot 12807  df-base 12809  df-sets 12810  df-iress 12811  df-plusg 12893  df-cmn 13593
This theorem is referenced by:  unitabl  13850  subrgcrng  13958
  Copyright terms: Public domain W3C validator