ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lssmex Unicode version

Theorem lssmex 14232
Description: If a linear subspace is inhabited, the class it is built from is a set. (Contributed by Jim Kingdon, 28-Apr-2025.)
Hypothesis
Ref Expression
lssmex.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lssmex  |-  ( U  e.  S  ->  W  e.  _V )

Proof of Theorem lssmex
Dummy variables  a  b  j  s  w  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptrel 4824 . . . 4  |-  Rel  (
w  e.  _V  |->  { s  e.  ~P ( Base `  w )  |  ( E. j  j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w )
) A. a  e.  s  A. b  e.  s  ( ( x ( .s `  w
) a ) ( +g  `  w ) b )  e.  s ) } )
2 df-lssm 14230 . . . . 5  |-  LSubSp  =  ( w  e.  _V  |->  { s  e.  ~P ( Base `  w )  |  ( E. j  j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w )
) A. a  e.  s  A. b  e.  s  ( ( x ( .s `  w
) a ) ( +g  `  w ) b )  e.  s ) } )
32releqi 4776 . . . 4  |-  ( Rel  LSubSp  <->  Rel  ( w  e.  _V  |->  { s  e.  ~P ( Base `  w )  |  ( E. j 
j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w )
) A. a  e.  s  A. b  e.  s  ( ( x ( .s `  w
) a ) ( +g  `  w ) b )  e.  s ) } ) )
41, 3mpbir 146 . . 3  |-  Rel  LSubSp
5 lssmex.s . . . . 5  |-  S  =  ( LSubSp `  W )
65eleq2i 2274 . . . 4  |-  ( U  e.  S  <->  U  e.  ( LSubSp `  W )
)
76biimpi 120 . . 3  |-  ( U  e.  S  ->  U  e.  ( LSubSp `  W )
)
8 relelfvdm 5631 . . 3  |-  ( ( Rel  LSubSp  /\  U  e.  ( LSubSp `  W )
)  ->  W  e.  dom  LSubSp )
94, 7, 8sylancr 414 . 2  |-  ( U  e.  S  ->  W  e.  dom  LSubSp )
109elexd 2790 1  |-  ( U  e.  S  ->  W  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373   E.wex 1516    e. wcel 2178   A.wral 2486   {crab 2490   _Vcvv 2776   ~Pcpw 3626    |-> cmpt 4121   dom cdm 4693   Rel wrel 4698   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024  Scalarcsca 13027   .scvsca 13028   LSubSpclss 14229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-xp 4699  df-rel 4700  df-dm 4703  df-iota 5251  df-fv 5298  df-lssm 14230
This theorem is referenced by:  islssm  14234
  Copyright terms: Public domain W3C validator