ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lssmex Unicode version

Theorem lssmex 13911
Description: If a linear subspace is inhabited, the class it is built from is a set. (Contributed by Jim Kingdon, 28-Apr-2025.)
Hypothesis
Ref Expression
lssmex.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lssmex  |-  ( U  e.  S  ->  W  e.  _V )

Proof of Theorem lssmex
Dummy variables  a  b  j  s  w  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptrel 4794 . . . 4  |-  Rel  (
w  e.  _V  |->  { s  e.  ~P ( Base `  w )  |  ( E. j  j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w )
) A. a  e.  s  A. b  e.  s  ( ( x ( .s `  w
) a ) ( +g  `  w ) b )  e.  s ) } )
2 df-lssm 13909 . . . . 5  |-  LSubSp  =  ( w  e.  _V  |->  { s  e.  ~P ( Base `  w )  |  ( E. j  j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w )
) A. a  e.  s  A. b  e.  s  ( ( x ( .s `  w
) a ) ( +g  `  w ) b )  e.  s ) } )
32releqi 4746 . . . 4  |-  ( Rel  LSubSp  <->  Rel  ( w  e.  _V  |->  { s  e.  ~P ( Base `  w )  |  ( E. j 
j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w )
) A. a  e.  s  A. b  e.  s  ( ( x ( .s `  w
) a ) ( +g  `  w ) b )  e.  s ) } ) )
41, 3mpbir 146 . . 3  |-  Rel  LSubSp
5 lssmex.s . . . . 5  |-  S  =  ( LSubSp `  W )
65eleq2i 2263 . . . 4  |-  ( U  e.  S  <->  U  e.  ( LSubSp `  W )
)
76biimpi 120 . . 3  |-  ( U  e.  S  ->  U  e.  ( LSubSp `  W )
)
8 relelfvdm 5590 . . 3  |-  ( ( Rel  LSubSp  /\  U  e.  ( LSubSp `  W )
)  ->  W  e.  dom  LSubSp )
94, 7, 8sylancr 414 . 2  |-  ( U  e.  S  ->  W  e.  dom  LSubSp )
109elexd 2776 1  |-  ( U  e.  S  ->  W  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1506    e. wcel 2167   A.wral 2475   {crab 2479   _Vcvv 2763   ~Pcpw 3605    |-> cmpt 4094   dom cdm 4663   Rel wrel 4668   ` cfv 5258  (class class class)co 5922   Basecbs 12678   +g cplusg 12755  Scalarcsca 12758   .scvsca 12759   LSubSpclss 13908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-xp 4669  df-rel 4670  df-dm 4673  df-iota 5219  df-fv 5266  df-lssm 13909
This theorem is referenced by:  islssm  13913
  Copyright terms: Public domain W3C validator