ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lssmex Unicode version

Theorem lssmex 13688
Description: If a linear subspace is inhabited, the class it is built from is a set. (Contributed by Jim Kingdon, 28-Apr-2025.)
Hypothesis
Ref Expression
lssmex.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lssmex  |-  ( U  e.  S  ->  W  e.  _V )

Proof of Theorem lssmex
Dummy variables  a  b  j  s  w  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptrel 4773 . . . 4  |-  Rel  (
w  e.  _V  |->  { s  e.  ~P ( Base `  w )  |  ( E. j  j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w )
) A. a  e.  s  A. b  e.  s  ( ( x ( .s `  w
) a ) ( +g  `  w ) b )  e.  s ) } )
2 df-lssm 13686 . . . . 5  |-  LSubSp  =  ( w  e.  _V  |->  { s  e.  ~P ( Base `  w )  |  ( E. j  j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w )
) A. a  e.  s  A. b  e.  s  ( ( x ( .s `  w
) a ) ( +g  `  w ) b )  e.  s ) } )
32releqi 4727 . . . 4  |-  ( Rel  LSubSp  <->  Rel  ( w  e.  _V  |->  { s  e.  ~P ( Base `  w )  |  ( E. j 
j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w )
) A. a  e.  s  A. b  e.  s  ( ( x ( .s `  w
) a ) ( +g  `  w ) b )  e.  s ) } ) )
41, 3mpbir 146 . . 3  |-  Rel  LSubSp
5 lssmex.s . . . . 5  |-  S  =  ( LSubSp `  W )
65eleq2i 2256 . . . 4  |-  ( U  e.  S  <->  U  e.  ( LSubSp `  W )
)
76biimpi 120 . . 3  |-  ( U  e.  S  ->  U  e.  ( LSubSp `  W )
)
8 relelfvdm 5566 . . 3  |-  ( ( Rel  LSubSp  /\  U  e.  ( LSubSp `  W )
)  ->  W  e.  dom  LSubSp )
94, 7, 8sylancr 414 . 2  |-  ( U  e.  S  ->  W  e.  dom  LSubSp )
109elexd 2765 1  |-  ( U  e.  S  ->  W  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1503    e. wcel 2160   A.wral 2468   {crab 2472   _Vcvv 2752   ~Pcpw 3590    |-> cmpt 4079   dom cdm 4644   Rel wrel 4649   ` cfv 5235  (class class class)co 5897   Basecbs 12515   +g cplusg 12592  Scalarcsca 12595   .scvsca 12596   LSubSpclss 13685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-mpt 4081  df-xp 4650  df-rel 4651  df-dm 4654  df-iota 5196  df-fv 5243  df-lssm 13686
This theorem is referenced by:  islssm  13690
  Copyright terms: Public domain W3C validator