ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lssmex Unicode version

Theorem lssmex 13851
Description: If a linear subspace is inhabited, the class it is built from is a set. (Contributed by Jim Kingdon, 28-Apr-2025.)
Hypothesis
Ref Expression
lssmex.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lssmex  |-  ( U  e.  S  ->  W  e.  _V )

Proof of Theorem lssmex
Dummy variables  a  b  j  s  w  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptrel 4790 . . . 4  |-  Rel  (
w  e.  _V  |->  { s  e.  ~P ( Base `  w )  |  ( E. j  j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w )
) A. a  e.  s  A. b  e.  s  ( ( x ( .s `  w
) a ) ( +g  `  w ) b )  e.  s ) } )
2 df-lssm 13849 . . . . 5  |-  LSubSp  =  ( w  e.  _V  |->  { s  e.  ~P ( Base `  w )  |  ( E. j  j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w )
) A. a  e.  s  A. b  e.  s  ( ( x ( .s `  w
) a ) ( +g  `  w ) b )  e.  s ) } )
32releqi 4742 . . . 4  |-  ( Rel  LSubSp  <->  Rel  ( w  e.  _V  |->  { s  e.  ~P ( Base `  w )  |  ( E. j 
j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w )
) A. a  e.  s  A. b  e.  s  ( ( x ( .s `  w
) a ) ( +g  `  w ) b )  e.  s ) } ) )
41, 3mpbir 146 . . 3  |-  Rel  LSubSp
5 lssmex.s . . . . 5  |-  S  =  ( LSubSp `  W )
65eleq2i 2260 . . . 4  |-  ( U  e.  S  <->  U  e.  ( LSubSp `  W )
)
76biimpi 120 . . 3  |-  ( U  e.  S  ->  U  e.  ( LSubSp `  W )
)
8 relelfvdm 5586 . . 3  |-  ( ( Rel  LSubSp  /\  U  e.  ( LSubSp `  W )
)  ->  W  e.  dom  LSubSp )
94, 7, 8sylancr 414 . 2  |-  ( U  e.  S  ->  W  e.  dom  LSubSp )
109elexd 2773 1  |-  ( U  e.  S  ->  W  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1503    e. wcel 2164   A.wral 2472   {crab 2476   _Vcvv 2760   ~Pcpw 3601    |-> cmpt 4090   dom cdm 4659   Rel wrel 4664   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695  Scalarcsca 12698   .scvsca 12699   LSubSpclss 13848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-xp 4665  df-rel 4666  df-dm 4669  df-iota 5215  df-fv 5262  df-lssm 13849
This theorem is referenced by:  islssm  13853
  Copyright terms: Public domain W3C validator