ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lssmex Unicode version

Theorem lssmex 14319
Description: If a linear subspace is inhabited, the class it is built from is a set. (Contributed by Jim Kingdon, 28-Apr-2025.)
Hypothesis
Ref Expression
lssmex.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lssmex  |-  ( U  e.  S  ->  W  e.  _V )

Proof of Theorem lssmex
Dummy variables  a  b  j  s  w  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptrel 4850 . . . 4  |-  Rel  (
w  e.  _V  |->  { s  e.  ~P ( Base `  w )  |  ( E. j  j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w )
) A. a  e.  s  A. b  e.  s  ( ( x ( .s `  w
) a ) ( +g  `  w ) b )  e.  s ) } )
2 df-lssm 14317 . . . . 5  |-  LSubSp  =  ( w  e.  _V  |->  { s  e.  ~P ( Base `  w )  |  ( E. j  j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w )
) A. a  e.  s  A. b  e.  s  ( ( x ( .s `  w
) a ) ( +g  `  w ) b )  e.  s ) } )
32releqi 4802 . . . 4  |-  ( Rel  LSubSp  <->  Rel  ( w  e.  _V  |->  { s  e.  ~P ( Base `  w )  |  ( E. j 
j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w )
) A. a  e.  s  A. b  e.  s  ( ( x ( .s `  w
) a ) ( +g  `  w ) b )  e.  s ) } ) )
41, 3mpbir 146 . . 3  |-  Rel  LSubSp
5 lssmex.s . . . . 5  |-  S  =  ( LSubSp `  W )
65eleq2i 2296 . . . 4  |-  ( U  e.  S  <->  U  e.  ( LSubSp `  W )
)
76biimpi 120 . . 3  |-  ( U  e.  S  ->  U  e.  ( LSubSp `  W )
)
8 relelfvdm 5659 . . 3  |-  ( ( Rel  LSubSp  /\  U  e.  ( LSubSp `  W )
)  ->  W  e.  dom  LSubSp )
94, 7, 8sylancr 414 . 2  |-  ( U  e.  S  ->  W  e.  dom  LSubSp )
109elexd 2813 1  |-  ( U  e.  S  ->  W  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395   E.wex 1538    e. wcel 2200   A.wral 2508   {crab 2512   _Vcvv 2799   ~Pcpw 3649    |-> cmpt 4145   dom cdm 4719   Rel wrel 4724   ` cfv 5318  (class class class)co 6001   Basecbs 13032   +g cplusg 13110  Scalarcsca 13113   .scvsca 13114   LSubSpclss 14316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-xp 4725  df-rel 4726  df-dm 4729  df-iota 5278  df-fv 5326  df-lssm 14317
This theorem is referenced by:  islssm  14321
  Copyright terms: Public domain W3C validator