![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lssmex | GIF version |
Description: If a linear subspace is inhabited, the class it is built from is a set. (Contributed by Jim Kingdon, 28-Apr-2025.) |
Ref | Expression |
---|---|
lssmex.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
lssmex | ⊢ (𝑈 ∈ 𝑆 → 𝑊 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptrel 4790 | . . . 4 ⊢ Rel (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)}) | |
2 | df-lssm 13849 | . . . . 5 ⊢ LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)}) | |
3 | 2 | releqi 4742 | . . . 4 ⊢ (Rel LSubSp ↔ Rel (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)})) |
4 | 1, 3 | mpbir 146 | . . 3 ⊢ Rel LSubSp |
5 | lssmex.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
6 | 5 | eleq2i 2260 | . . . 4 ⊢ (𝑈 ∈ 𝑆 ↔ 𝑈 ∈ (LSubSp‘𝑊)) |
7 | 6 | biimpi 120 | . . 3 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ∈ (LSubSp‘𝑊)) |
8 | relelfvdm 5586 | . . 3 ⊢ ((Rel LSubSp ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑊 ∈ dom LSubSp) | |
9 | 4, 7, 8 | sylancr 414 | . 2 ⊢ (𝑈 ∈ 𝑆 → 𝑊 ∈ dom LSubSp) |
10 | 9 | elexd 2773 | 1 ⊢ (𝑈 ∈ 𝑆 → 𝑊 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ∀wral 2472 {crab 2476 Vcvv 2760 𝒫 cpw 3601 ↦ cmpt 4090 dom cdm 4659 Rel wrel 4664 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 +gcplusg 12695 Scalarcsca 12698 ·𝑠 cvsca 12699 LSubSpclss 13848 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-xp 4665 df-rel 4666 df-dm 4669 df-iota 5215 df-fv 5262 df-lssm 13849 |
This theorem is referenced by: islssm 13853 |
Copyright terms: Public domain | W3C validator |