| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lssmex | GIF version | ||
| Description: If a linear subspace is inhabited, the class it is built from is a set. (Contributed by Jim Kingdon, 28-Apr-2025.) |
| Ref | Expression |
|---|---|
| lssmex.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| lssmex | ⊢ (𝑈 ∈ 𝑆 → 𝑊 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptrel 4824 | . . . 4 ⊢ Rel (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)}) | |
| 2 | df-lssm 14230 | . . . . 5 ⊢ LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)}) | |
| 3 | 2 | releqi 4776 | . . . 4 ⊢ (Rel LSubSp ↔ Rel (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)})) |
| 4 | 1, 3 | mpbir 146 | . . 3 ⊢ Rel LSubSp |
| 5 | lssmex.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 6 | 5 | eleq2i 2274 | . . . 4 ⊢ (𝑈 ∈ 𝑆 ↔ 𝑈 ∈ (LSubSp‘𝑊)) |
| 7 | 6 | biimpi 120 | . . 3 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ∈ (LSubSp‘𝑊)) |
| 8 | relelfvdm 5631 | . . 3 ⊢ ((Rel LSubSp ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑊 ∈ dom LSubSp) | |
| 9 | 4, 7, 8 | sylancr 414 | . 2 ⊢ (𝑈 ∈ 𝑆 → 𝑊 ∈ dom LSubSp) |
| 10 | 9 | elexd 2790 | 1 ⊢ (𝑈 ∈ 𝑆 → 𝑊 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∃wex 1516 ∈ wcel 2178 ∀wral 2486 {crab 2490 Vcvv 2776 𝒫 cpw 3626 ↦ cmpt 4121 dom cdm 4693 Rel wrel 4698 ‘cfv 5290 (class class class)co 5967 Basecbs 12947 +gcplusg 13024 Scalarcsca 13027 ·𝑠 cvsca 13028 LSubSpclss 14229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-xp 4699 df-rel 4700 df-dm 4703 df-iota 5251 df-fv 5298 df-lssm 14230 |
| This theorem is referenced by: islssm 14234 |
| Copyright terms: Public domain | W3C validator |