ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lssmex GIF version

Theorem lssmex 13987
Description: If a linear subspace is inhabited, the class it is built from is a set. (Contributed by Jim Kingdon, 28-Apr-2025.)
Hypothesis
Ref Expression
lssmex.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lssmex (𝑈𝑆𝑊 ∈ V)

Proof of Theorem lssmex
Dummy variables 𝑎 𝑏 𝑗 𝑠 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptrel 4795 . . . 4 Rel (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠)})
2 df-lssm 13985 . . . . 5 LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠)})
32releqi 4747 . . . 4 (Rel LSubSp ↔ Rel (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠)}))
41, 3mpbir 146 . . 3 Rel LSubSp
5 lssmex.s . . . . 5 𝑆 = (LSubSp‘𝑊)
65eleq2i 2263 . . . 4 (𝑈𝑆𝑈 ∈ (LSubSp‘𝑊))
76biimpi 120 . . 3 (𝑈𝑆𝑈 ∈ (LSubSp‘𝑊))
8 relelfvdm 5593 . . 3 ((Rel LSubSp ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑊 ∈ dom LSubSp)
94, 7, 8sylancr 414 . 2 (𝑈𝑆𝑊 ∈ dom LSubSp)
109elexd 2776 1 (𝑈𝑆𝑊 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wex 1506  wcel 2167  wral 2475  {crab 2479  Vcvv 2763  𝒫 cpw 3606  cmpt 4095  dom cdm 4664  Rel wrel 4669  cfv 5259  (class class class)co 5925  Basecbs 12703  +gcplusg 12780  Scalarcsca 12783   ·𝑠 cvsca 12784  LSubSpclss 13984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-xp 4670  df-rel 4671  df-dm 4674  df-iota 5220  df-fv 5267  df-lssm 13985
This theorem is referenced by:  islssm  13989
  Copyright terms: Public domain W3C validator