ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lssmex GIF version

Theorem lssmex 14232
Description: If a linear subspace is inhabited, the class it is built from is a set. (Contributed by Jim Kingdon, 28-Apr-2025.)
Hypothesis
Ref Expression
lssmex.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lssmex (𝑈𝑆𝑊 ∈ V)

Proof of Theorem lssmex
Dummy variables 𝑎 𝑏 𝑗 𝑠 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptrel 4824 . . . 4 Rel (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠)})
2 df-lssm 14230 . . . . 5 LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠)})
32releqi 4776 . . . 4 (Rel LSubSp ↔ Rel (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠)}))
41, 3mpbir 146 . . 3 Rel LSubSp
5 lssmex.s . . . . 5 𝑆 = (LSubSp‘𝑊)
65eleq2i 2274 . . . 4 (𝑈𝑆𝑈 ∈ (LSubSp‘𝑊))
76biimpi 120 . . 3 (𝑈𝑆𝑈 ∈ (LSubSp‘𝑊))
8 relelfvdm 5631 . . 3 ((Rel LSubSp ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑊 ∈ dom LSubSp)
94, 7, 8sylancr 414 . 2 (𝑈𝑆𝑊 ∈ dom LSubSp)
109elexd 2790 1 (𝑈𝑆𝑊 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wex 1516  wcel 2178  wral 2486  {crab 2490  Vcvv 2776  𝒫 cpw 3626  cmpt 4121  dom cdm 4693  Rel wrel 4698  cfv 5290  (class class class)co 5967  Basecbs 12947  +gcplusg 13024  Scalarcsca 13027   ·𝑠 cvsca 13028  LSubSpclss 14229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-xp 4699  df-rel 4700  df-dm 4703  df-iota 5251  df-fv 5298  df-lssm 14230
This theorem is referenced by:  islssm  14234
  Copyright terms: Public domain W3C validator