ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lssmex GIF version

Theorem lssmex 14319
Description: If a linear subspace is inhabited, the class it is built from is a set. (Contributed by Jim Kingdon, 28-Apr-2025.)
Hypothesis
Ref Expression
lssmex.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lssmex (𝑈𝑆𝑊 ∈ V)

Proof of Theorem lssmex
Dummy variables 𝑎 𝑏 𝑗 𝑠 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptrel 4850 . . . 4 Rel (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠)})
2 df-lssm 14317 . . . . 5 LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠)})
32releqi 4802 . . . 4 (Rel LSubSp ↔ Rel (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠)}))
41, 3mpbir 146 . . 3 Rel LSubSp
5 lssmex.s . . . . 5 𝑆 = (LSubSp‘𝑊)
65eleq2i 2296 . . . 4 (𝑈𝑆𝑈 ∈ (LSubSp‘𝑊))
76biimpi 120 . . 3 (𝑈𝑆𝑈 ∈ (LSubSp‘𝑊))
8 relelfvdm 5659 . . 3 ((Rel LSubSp ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑊 ∈ dom LSubSp)
94, 7, 8sylancr 414 . 2 (𝑈𝑆𝑊 ∈ dom LSubSp)
109elexd 2813 1 (𝑈𝑆𝑊 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wex 1538  wcel 2200  wral 2508  {crab 2512  Vcvv 2799  𝒫 cpw 3649  cmpt 4145  dom cdm 4719  Rel wrel 4724  cfv 5318  (class class class)co 6001  Basecbs 13032  +gcplusg 13110  Scalarcsca 13113   ·𝑠 cvsca 13114  LSubSpclss 14316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-xp 4725  df-rel 4726  df-dm 4729  df-iota 5278  df-fv 5326  df-lssm 14317
This theorem is referenced by:  islssm  14321
  Copyright terms: Public domain W3C validator