| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lssmex | GIF version | ||
| Description: If a linear subspace is inhabited, the class it is built from is a set. (Contributed by Jim Kingdon, 28-Apr-2025.) |
| Ref | Expression |
|---|---|
| lssmex.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| lssmex | ⊢ (𝑈 ∈ 𝑆 → 𝑊 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptrel 4806 | . . . 4 ⊢ Rel (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)}) | |
| 2 | df-lssm 14115 | . . . . 5 ⊢ LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)}) | |
| 3 | 2 | releqi 4758 | . . . 4 ⊢ (Rel LSubSp ↔ Rel (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)})) |
| 4 | 1, 3 | mpbir 146 | . . 3 ⊢ Rel LSubSp |
| 5 | lssmex.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 6 | 5 | eleq2i 2272 | . . . 4 ⊢ (𝑈 ∈ 𝑆 ↔ 𝑈 ∈ (LSubSp‘𝑊)) |
| 7 | 6 | biimpi 120 | . . 3 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ∈ (LSubSp‘𝑊)) |
| 8 | relelfvdm 5608 | . . 3 ⊢ ((Rel LSubSp ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑊 ∈ dom LSubSp) | |
| 9 | 4, 7, 8 | sylancr 414 | . 2 ⊢ (𝑈 ∈ 𝑆 → 𝑊 ∈ dom LSubSp) |
| 10 | 9 | elexd 2785 | 1 ⊢ (𝑈 ∈ 𝑆 → 𝑊 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∃wex 1515 ∈ wcel 2176 ∀wral 2484 {crab 2488 Vcvv 2772 𝒫 cpw 3616 ↦ cmpt 4105 dom cdm 4675 Rel wrel 4680 ‘cfv 5271 (class class class)co 5944 Basecbs 12832 +gcplusg 12909 Scalarcsca 12912 ·𝑠 cvsca 12913 LSubSpclss 14114 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-xp 4681 df-rel 4682 df-dm 4685 df-iota 5232 df-fv 5279 df-lssm 14115 |
| This theorem is referenced by: islssm 14119 |
| Copyright terms: Public domain | W3C validator |