| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > islssm | Unicode version | ||
| Description: The predicate "is a subspace" (of a left module or left vector space). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
| Ref | Expression |
|---|---|
| lssset.f |
|
| lssset.b |
|
| lssset.v |
|
| lssset.p |
|
| lssset.t |
|
| lssset.s |
|
| Ref | Expression |
|---|---|
| islssm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssset.s |
. . 3
| |
| 2 | 1 | lssmex 14232 |
. 2
|
| 3 | eleq1w 2268 |
. . . . . 6
| |
| 4 | 3 | cbvexv 1943 |
. . . . 5
|
| 5 | ssel 3195 |
. . . . . . 7
| |
| 6 | lssset.v |
. . . . . . . 8
| |
| 7 | 6 | basmex 13006 |
. . . . . . 7
|
| 8 | 5, 7 | syl6 33 |
. . . . . 6
|
| 9 | 8 | exlimdv 1843 |
. . . . 5
|
| 10 | 4, 9 | biimtrrid 153 |
. . . 4
|
| 11 | 10 | imp 124 |
. . 3
|
| 12 | 11 | 3adant3 1020 |
. 2
|
| 13 | lssset.f |
. . . . 5
| |
| 14 | lssset.b |
. . . . 5
| |
| 15 | lssset.p |
. . . . 5
| |
| 16 | lssset.t |
. . . . 5
| |
| 17 | 13, 14, 6, 15, 16, 1 | lsssetm 14233 |
. . . 4
|
| 18 | 17 | eleq2d 2277 |
. . 3
|
| 19 | basfn 13005 |
. . . . . . . 8
| |
| 20 | funfvex 5616 |
. . . . . . . . 9
| |
| 21 | 20 | funfni 5395 |
. . . . . . . 8
|
| 22 | 19, 21 | mpan 424 |
. . . . . . 7
|
| 23 | 6, 22 | eqeltrid 2294 |
. . . . . 6
|
| 24 | elpw2g 4216 |
. . . . . 6
| |
| 25 | 23, 24 | syl 14 |
. . . . 5
|
| 26 | 25 | anbi1d 465 |
. . . 4
|
| 27 | eleq2 2271 |
. . . . . . 7
| |
| 28 | 27 | exbidv 1849 |
. . . . . 6
|
| 29 | eleq2 2271 |
. . . . . . . . 9
| |
| 30 | 29 | raleqbi1dv 2717 |
. . . . . . . 8
|
| 31 | 30 | raleqbi1dv 2717 |
. . . . . . 7
|
| 32 | 31 | ralbidv 2508 |
. . . . . 6
|
| 33 | 28, 32 | anbi12d 473 |
. . . . 5
|
| 34 | 33 | elrab 2936 |
. . . 4
|
| 35 | 3anass 985 |
. . . 4
| |
| 36 | 26, 34, 35 | 3bitr4g 223 |
. . 3
|
| 37 | 18, 36 | bitrd 188 |
. 2
|
| 38 | 2, 12, 37 | pm5.21nii 706 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 df-ov 5970 df-inn 9072 df-ndx 12950 df-slot 12951 df-base 12953 df-lssm 14230 |
| This theorem is referenced by: islidlm 14356 |
| Copyright terms: Public domain | W3C validator |