ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  islssm Unicode version

Theorem islssm 13450
Description: The predicate "is a subspace" (of a left module or left vector space). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
lssset.f  |-  F  =  (Scalar `  W )
lssset.b  |-  B  =  ( Base `  F
)
lssset.v  |-  V  =  ( Base `  W
)
lssset.p  |-  .+  =  ( +g  `  W )
lssset.t  |-  .x.  =  ( .s `  W )
lssset.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
islssm  |-  ( W  e.  X  ->  ( U  e.  S  <->  ( U  C_  V  /\  E. j 
j  e.  U  /\  A. x  e.  B  A. a  e.  U  A. b  e.  U  (
( x  .x.  a
)  .+  b )  e.  U ) ) )
Distinct variable groups:    x, B    a,
b, x, W    U, a, b, x, j
Allowed substitution hints:    B( j, a, b)    .+ ( x, j, a, b)    S( x, j, a, b)    .x. ( x, j, a, b)    F( x, j, a, b)    V( x, j, a, b)    W( j)    X( x, j, a, b)

Proof of Theorem islssm
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 lssset.f . . . 4  |-  F  =  (Scalar `  W )
2 lssset.b . . . 4  |-  B  =  ( Base `  F
)
3 lssset.v . . . 4  |-  V  =  ( Base `  W
)
4 lssset.p . . . 4  |-  .+  =  ( +g  `  W )
5 lssset.t . . . 4  |-  .x.  =  ( .s `  W )
6 lssset.s . . . 4  |-  S  =  ( LSubSp `  W )
71, 2, 3, 4, 5, 6lsssetm 13449 . . 3  |-  ( W  e.  X  ->  S  =  { s  e.  ~P V  |  ( E. j  j  e.  s  /\  A. x  e.  B  A. a  e.  s  A. b  e.  s 
( ( x  .x.  a )  .+  b
)  e.  s ) } )
87eleq2d 2247 . 2  |-  ( W  e.  X  ->  ( U  e.  S  <->  U  e.  { s  e.  ~P V  |  ( E. j 
j  e.  s  /\  A. x  e.  B  A. a  e.  s  A. b  e.  s  (
( x  .x.  a
)  .+  b )  e.  s ) } ) )
9 basfn 12522 . . . . . . 7  |-  Base  Fn  _V
10 elex 2750 . . . . . . 7  |-  ( W  e.  X  ->  W  e.  _V )
11 funfvex 5534 . . . . . . . 8  |-  ( ( Fun  Base  /\  W  e. 
dom  Base )  ->  ( Base `  W )  e. 
_V )
1211funfni 5318 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  W  e.  _V )  ->  ( Base `  W )  e. 
_V )
139, 10, 12sylancr 414 . . . . . 6  |-  ( W  e.  X  ->  ( Base `  W )  e. 
_V )
143, 13eqeltrid 2264 . . . . 5  |-  ( W  e.  X  ->  V  e.  _V )
15 elpw2g 4158 . . . . 5  |-  ( V  e.  _V  ->  ( U  e.  ~P V  <->  U 
C_  V ) )
1614, 15syl 14 . . . 4  |-  ( W  e.  X  ->  ( U  e.  ~P V  <->  U 
C_  V ) )
1716anbi1d 465 . . 3  |-  ( W  e.  X  ->  (
( U  e.  ~P V  /\  ( E. j 
j  e.  U  /\  A. x  e.  B  A. a  e.  U  A. b  e.  U  (
( x  .x.  a
)  .+  b )  e.  U ) )  <->  ( U  C_  V  /\  ( E. j  j  e.  U  /\  A. x  e.  B  A. a  e.  U  A. b  e.  U  ( ( x  .x.  a )  .+  b
)  e.  U ) ) ) )
18 eleq2 2241 . . . . . 6  |-  ( s  =  U  ->  (
j  e.  s  <->  j  e.  U ) )
1918exbidv 1825 . . . . 5  |-  ( s  =  U  ->  ( E. j  j  e.  s 
<->  E. j  j  e.  U ) )
20 eleq2 2241 . . . . . . . 8  |-  ( s  =  U  ->  (
( ( x  .x.  a )  .+  b
)  e.  s  <->  ( (
x  .x.  a )  .+  b )  e.  U
) )
2120raleqbi1dv 2681 . . . . . . 7  |-  ( s  =  U  ->  ( A. b  e.  s 
( ( x  .x.  a )  .+  b
)  e.  s  <->  A. b  e.  U  ( (
x  .x.  a )  .+  b )  e.  U
) )
2221raleqbi1dv 2681 . . . . . 6  |-  ( s  =  U  ->  ( A. a  e.  s  A. b  e.  s 
( ( x  .x.  a )  .+  b
)  e.  s  <->  A. a  e.  U  A. b  e.  U  ( (
x  .x.  a )  .+  b )  e.  U
) )
2322ralbidv 2477 . . . . 5  |-  ( s  =  U  ->  ( A. x  e.  B  A. a  e.  s  A. b  e.  s 
( ( x  .x.  a )  .+  b
)  e.  s  <->  A. x  e.  B  A. a  e.  U  A. b  e.  U  ( (
x  .x.  a )  .+  b )  e.  U
) )
2419, 23anbi12d 473 . . . 4  |-  ( s  =  U  ->  (
( E. j  j  e.  s  /\  A. x  e.  B  A. a  e.  s  A. b  e.  s  (
( x  .x.  a
)  .+  b )  e.  s )  <->  ( E. j  j  e.  U  /\  A. x  e.  B  A. a  e.  U  A. b  e.  U  ( ( x  .x.  a )  .+  b
)  e.  U ) ) )
2524elrab 2895 . . 3  |-  ( U  e.  { s  e. 
~P V  |  ( E. j  j  e.  s  /\  A. x  e.  B  A. a  e.  s  A. b  e.  s  ( (
x  .x.  a )  .+  b )  e.  s ) }  <->  ( U  e.  ~P V  /\  ( E. j  j  e.  U  /\  A. x  e.  B  A. a  e.  U  A. b  e.  U  ( ( x 
.x.  a )  .+  b )  e.  U
) ) )
26 3anass 982 . . 3  |-  ( ( U  C_  V  /\  E. j  j  e.  U  /\  A. x  e.  B  A. a  e.  U  A. b  e.  U  ( ( x  .x.  a )  .+  b
)  e.  U )  <-> 
( U  C_  V  /\  ( E. j  j  e.  U  /\  A. x  e.  B  A. a  e.  U  A. b  e.  U  (
( x  .x.  a
)  .+  b )  e.  U ) ) )
2717, 25, 263bitr4g 223 . 2  |-  ( W  e.  X  ->  ( U  e.  { s  e.  ~P V  |  ( E. j  j  e.  s  /\  A. x  e.  B  A. a  e.  s  A. b  e.  s  ( (
x  .x.  a )  .+  b )  e.  s ) }  <->  ( U  C_  V  /\  E. j 
j  e.  U  /\  A. x  e.  B  A. a  e.  U  A. b  e.  U  (
( x  .x.  a
)  .+  b )  e.  U ) ) )
288, 27bitrd 188 1  |-  ( W  e.  X  ->  ( U  e.  S  <->  ( U  C_  V  /\  E. j 
j  e.  U  /\  A. x  e.  B  A. a  e.  U  A. b  e.  U  (
( x  .x.  a
)  .+  b )  e.  U ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353   E.wex 1492    e. wcel 2148   A.wral 2455   {crab 2459   _Vcvv 2739    C_ wss 3131   ~Pcpw 3577    Fn wfn 5213   ` cfv 5218  (class class class)co 5877   Basecbs 12464   +g cplusg 12538  Scalarcsca 12541   .scvsca 12542   LSubSpclss 13447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-ov 5880  df-inn 8922  df-ndx 12467  df-slot 12468  df-base 12470  df-lssm 13448
This theorem is referenced by:  islssmd  13451  lssssg  13452  lssclg  13456  lss0cl  13461  islss4  13474  lsspropdg  13522
  Copyright terms: Public domain W3C validator