| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > islssm | Unicode version | ||
| Description: The predicate "is a subspace" (of a left module or left vector space). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
| Ref | Expression |
|---|---|
| lssset.f |
|
| lssset.b |
|
| lssset.v |
|
| lssset.p |
|
| lssset.t |
|
| lssset.s |
|
| Ref | Expression |
|---|---|
| islssm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssset.s |
. . 3
| |
| 2 | 1 | lssmex 14319 |
. 2
|
| 3 | eleq1w 2290 |
. . . . . 6
| |
| 4 | 3 | cbvexv 1965 |
. . . . 5
|
| 5 | ssel 3218 |
. . . . . . 7
| |
| 6 | lssset.v |
. . . . . . . 8
| |
| 7 | 6 | basmex 13092 |
. . . . . . 7
|
| 8 | 5, 7 | syl6 33 |
. . . . . 6
|
| 9 | 8 | exlimdv 1865 |
. . . . 5
|
| 10 | 4, 9 | biimtrrid 153 |
. . . 4
|
| 11 | 10 | imp 124 |
. . 3
|
| 12 | 11 | 3adant3 1041 |
. 2
|
| 13 | lssset.f |
. . . . 5
| |
| 14 | lssset.b |
. . . . 5
| |
| 15 | lssset.p |
. . . . 5
| |
| 16 | lssset.t |
. . . . 5
| |
| 17 | 13, 14, 6, 15, 16, 1 | lsssetm 14320 |
. . . 4
|
| 18 | 17 | eleq2d 2299 |
. . 3
|
| 19 | basfn 13091 |
. . . . . . . 8
| |
| 20 | funfvex 5644 |
. . . . . . . . 9
| |
| 21 | 20 | funfni 5423 |
. . . . . . . 8
|
| 22 | 19, 21 | mpan 424 |
. . . . . . 7
|
| 23 | 6, 22 | eqeltrid 2316 |
. . . . . 6
|
| 24 | elpw2g 4240 |
. . . . . 6
| |
| 25 | 23, 24 | syl 14 |
. . . . 5
|
| 26 | 25 | anbi1d 465 |
. . . 4
|
| 27 | eleq2 2293 |
. . . . . . 7
| |
| 28 | 27 | exbidv 1871 |
. . . . . 6
|
| 29 | eleq2 2293 |
. . . . . . . . 9
| |
| 30 | 29 | raleqbi1dv 2740 |
. . . . . . . 8
|
| 31 | 30 | raleqbi1dv 2740 |
. . . . . . 7
|
| 32 | 31 | ralbidv 2530 |
. . . . . 6
|
| 33 | 28, 32 | anbi12d 473 |
. . . . 5
|
| 34 | 33 | elrab 2959 |
. . . 4
|
| 35 | 3anass 1006 |
. . . 4
| |
| 36 | 26, 34, 35 | 3bitr4g 223 |
. . 3
|
| 37 | 18, 36 | bitrd 188 |
. 2
|
| 38 | 2, 12, 37 | pm5.21nii 709 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-ov 6004 df-inn 9111 df-ndx 13035 df-slot 13036 df-base 13038 df-lssm 14317 |
| This theorem is referenced by: islidlm 14443 |
| Copyright terms: Public domain | W3C validator |