| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltpnfd | GIF version | ||
| Description: Any (finite) real is less than plus infinity. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| ltpnfd.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Ref | Expression |
|---|---|
| ltpnfd | ⊢ (𝜑 → 𝐴 < +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltpnfd.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ltpnf 9902 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 < +∞) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 class class class wbr 4044 ℝcr 7924 +∞cpnf 8104 < clt 8107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-cnex 8016 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-xp 4681 df-pnf 8109 df-xr 8111 df-ltxr 8112 |
| This theorem is referenced by: xnn0dcle 9924 xqltnle 10410 fprodge1 11950 pcadd 12663 |
| Copyright terms: Public domain | W3C validator |