ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xqltnle Unicode version

Theorem xqltnle 10336
Description: "Less than" expressed in terms of "less than or equal to", for extended numbers which are rational or +oo. We have not yet had enough usage of such numbers to warrant fully developing the concept, as in NN0* or  RR*, so for now we just have a handful of theorems for what we need. (Contributed by Jim Kingdon, 5-Jun-2025.)
Assertion
Ref Expression
xqltnle  |-  ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo ) )  -> 
( A  <  B  <->  -.  B  <_  A )
)

Proof of Theorem xqltnle
StepHypRef Expression
1 qltnle 10313 . . . 4  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  <  B  <->  -.  B  <_  A )
)
21adantll 476 . . 3  |-  ( ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  /\  B  e.  QQ )  ->  ( A  <  B  <->  -.  B  <_  A ) )
3 simplr 528 . . . . . . 7  |-  ( ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  /\  B  = +oo )  ->  A  e.  QQ )
4 qre 9690 . . . . . . 7  |-  ( A  e.  QQ  ->  A  e.  RR )
53, 4syl 14 . . . . . 6  |-  ( ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  /\  B  = +oo )  ->  A  e.  RR )
65ltpnfd 9847 . . . . 5  |-  ( ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  /\  B  = +oo )  ->  A  < +oo )
7 simpr 110 . . . . 5  |-  ( ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  /\  B  = +oo )  ->  B  = +oo )
86, 7breqtrrd 4057 . . . 4  |-  ( ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  /\  B  = +oo )  ->  A  <  B )
95renepnfd 8070 . . . . . . 7  |-  ( ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  /\  B  = +oo )  ->  A  =/= +oo )
109neneqd 2385 . . . . . 6  |-  ( ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  /\  B  = +oo )  ->  -.  A  = +oo )
115rexrd 8069 . . . . . . 7  |-  ( ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  /\  B  = +oo )  ->  A  e.  RR* )
12 xgepnf 9882 . . . . . . 7  |-  ( A  e.  RR*  ->  ( +oo  <_  A  <->  A  = +oo ) )
1311, 12syl 14 . . . . . 6  |-  ( ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  /\  B  = +oo )  ->  ( +oo  <_  A  <->  A  = +oo ) )
1410, 13mtbird 674 . . . . 5  |-  ( ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  /\  B  = +oo )  ->  -. +oo 
<_  A )
157, 14eqnbrtrd 4047 . . . 4  |-  ( ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  /\  B  = +oo )  ->  -.  B  <_  A )
168, 152thd 175 . . 3  |-  ( ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  /\  B  = +oo )  ->  ( A  <  B  <->  -.  B  <_  A ) )
17 simplr 528 . . 3  |-  ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  ->  ( B  e.  QQ  \/  B  = +oo ) )
182, 16, 17mpjaodan 799 . 2  |-  ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  ->  ( A  <  B  <->  -.  B  <_  A ) )
19 simpr 110 . . . 4  |-  ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  = +oo )  ->  A  = +oo )
20 qre 9690 . . . . . . . . 9  |-  ( B  e.  QQ  ->  B  e.  RR )
2120rexrd 8069 . . . . . . . 8  |-  ( B  e.  QQ  ->  B  e.  RR* )
22 pnfxr 8072 . . . . . . . . 9  |- +oo  e.  RR*
23 eleq1 2256 . . . . . . . . 9  |-  ( B  = +oo  ->  ( B  e.  RR*  <-> +oo  e.  RR* ) )
2422, 23mpbiri 168 . . . . . . . 8  |-  ( B  = +oo  ->  B  e.  RR* )
2521, 24jaoi 717 . . . . . . 7  |-  ( ( B  e.  QQ  \/  B  = +oo )  ->  B  e.  RR* )
2625adantl 277 . . . . . 6  |-  ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo ) )  ->  B  e.  RR* )
27 pnfnlt 9853 . . . . . 6  |-  ( B  e.  RR*  ->  -. +oo  <  B )
2826, 27syl 14 . . . . 5  |-  ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo ) )  ->  -. +oo  <  B )
2928adantr 276 . . . 4  |-  ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  = +oo )  ->  -. +oo  <  B )
3019, 29eqnbrtrd 4047 . . 3  |-  ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  = +oo )  ->  -.  A  <  B )
31 pnfge 9855 . . . . . . 7  |-  ( B  e.  RR*  ->  B  <_ +oo )
3226, 31syl 14 . . . . . 6  |-  ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo ) )  ->  B  <_ +oo )
3332adantr 276 . . . . 5  |-  ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  = +oo )  ->  B  <_ +oo )
3433, 19breqtrrd 4057 . . . 4  |-  ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  = +oo )  ->  B  <_  A )
3534notnotd 631 . . 3  |-  ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  = +oo )  ->  -.  -.  B  <_  A )
3630, 352falsed 703 . 2  |-  ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  = +oo )  ->  ( A  <  B  <->  -.  B  <_  A ) )
37 simpl 109 . 2  |-  ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo ) )  -> 
( A  e.  QQ  \/  A  = +oo ) )
3818, 36, 37mpjaodan 799 1  |-  ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo ) )  -> 
( A  <  B  <->  -.  B  <_  A )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2164   class class class wbr 4029   RRcr 7871   +oocpnf 8051   RR*cxr 8053    < clt 8054    <_ cle 8055   QQcq 9684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-n0 9241  df-z 9318  df-q 9685  df-rp 9720
This theorem is referenced by:  pcadd2  12479
  Copyright terms: Public domain W3C validator