ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xqltnle Unicode version

Theorem xqltnle 10487
Description: "Less than" expressed in terms of "less than or equal to", for extended numbers which are rational or +oo. We have not yet had enough usage of such numbers to warrant fully developing the concept, as in NN0* or  RR*, so for now we just have a handful of theorems for what we need. (Contributed by Jim Kingdon, 5-Jun-2025.)
Assertion
Ref Expression
xqltnle  |-  ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo ) )  -> 
( A  <  B  <->  -.  B  <_  A )
)

Proof of Theorem xqltnle
StepHypRef Expression
1 qltnle 10463 . . . 4  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  <  B  <->  -.  B  <_  A )
)
21adantll 476 . . 3  |-  ( ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  /\  B  e.  QQ )  ->  ( A  <  B  <->  -.  B  <_  A ) )
3 simplr 528 . . . . . . 7  |-  ( ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  /\  B  = +oo )  ->  A  e.  QQ )
4 qre 9820 . . . . . . 7  |-  ( A  e.  QQ  ->  A  e.  RR )
53, 4syl 14 . . . . . 6  |-  ( ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  /\  B  = +oo )  ->  A  e.  RR )
65ltpnfd 9977 . . . . 5  |-  ( ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  /\  B  = +oo )  ->  A  < +oo )
7 simpr 110 . . . . 5  |-  ( ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  /\  B  = +oo )  ->  B  = +oo )
86, 7breqtrrd 4111 . . . 4  |-  ( ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  /\  B  = +oo )  ->  A  <  B )
95renepnfd 8197 . . . . . . 7  |-  ( ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  /\  B  = +oo )  ->  A  =/= +oo )
109neneqd 2421 . . . . . 6  |-  ( ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  /\  B  = +oo )  ->  -.  A  = +oo )
115rexrd 8196 . . . . . . 7  |-  ( ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  /\  B  = +oo )  ->  A  e.  RR* )
12 xgepnf 10012 . . . . . . 7  |-  ( A  e.  RR*  ->  ( +oo  <_  A  <->  A  = +oo ) )
1311, 12syl 14 . . . . . 6  |-  ( ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  /\  B  = +oo )  ->  ( +oo  <_  A  <->  A  = +oo ) )
1410, 13mtbird 677 . . . . 5  |-  ( ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  /\  B  = +oo )  ->  -. +oo 
<_  A )
157, 14eqnbrtrd 4101 . . . 4  |-  ( ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  /\  B  = +oo )  ->  -.  B  <_  A )
168, 152thd 175 . . 3  |-  ( ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  /\  B  = +oo )  ->  ( A  <  B  <->  -.  B  <_  A ) )
17 simplr 528 . . 3  |-  ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  ->  ( B  e.  QQ  \/  B  = +oo ) )
182, 16, 17mpjaodan 803 . 2  |-  ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  ->  ( A  <  B  <->  -.  B  <_  A ) )
19 simpr 110 . . . 4  |-  ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  = +oo )  ->  A  = +oo )
20 qre 9820 . . . . . . . . 9  |-  ( B  e.  QQ  ->  B  e.  RR )
2120rexrd 8196 . . . . . . . 8  |-  ( B  e.  QQ  ->  B  e.  RR* )
22 pnfxr 8199 . . . . . . . . 9  |- +oo  e.  RR*
23 eleq1 2292 . . . . . . . . 9  |-  ( B  = +oo  ->  ( B  e.  RR*  <-> +oo  e.  RR* ) )
2422, 23mpbiri 168 . . . . . . . 8  |-  ( B  = +oo  ->  B  e.  RR* )
2521, 24jaoi 721 . . . . . . 7  |-  ( ( B  e.  QQ  \/  B  = +oo )  ->  B  e.  RR* )
2625adantl 277 . . . . . 6  |-  ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo ) )  ->  B  e.  RR* )
27 pnfnlt 9983 . . . . . 6  |-  ( B  e.  RR*  ->  -. +oo  <  B )
2826, 27syl 14 . . . . 5  |-  ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo ) )  ->  -. +oo  <  B )
2928adantr 276 . . . 4  |-  ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  = +oo )  ->  -. +oo  <  B )
3019, 29eqnbrtrd 4101 . . 3  |-  ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  = +oo )  ->  -.  A  <  B )
31 pnfge 9985 . . . . . . 7  |-  ( B  e.  RR*  ->  B  <_ +oo )
3226, 31syl 14 . . . . . 6  |-  ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo ) )  ->  B  <_ +oo )
3332adantr 276 . . . . 5  |-  ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  = +oo )  ->  B  <_ +oo )
3433, 19breqtrrd 4111 . . . 4  |-  ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  = +oo )  ->  B  <_  A )
3534notnotd 633 . . 3  |-  ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  = +oo )  ->  -.  -.  B  <_  A )
3630, 352falsed 707 . 2  |-  ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  = +oo )  ->  ( A  <  B  <->  -.  B  <_  A ) )
37 simpl 109 . 2  |-  ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo ) )  -> 
( A  e.  QQ  \/  A  = +oo ) )
3818, 36, 37mpjaodan 803 1  |-  ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo ) )  -> 
( A  <  B  <->  -.  B  <_  A )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    = wceq 1395    e. wcel 2200   class class class wbr 4083   RRcr 7998   +oocpnf 8178   RR*cxr 8180    < clt 8181    <_ cle 8182   QQcq 9814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-n0 9370  df-z 9447  df-q 9815  df-rp 9850
This theorem is referenced by:  pcadd2  12864
  Copyright terms: Public domain W3C validator