ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xqltnle Unicode version

Theorem xqltnle 10357
Description: "Less than" expressed in terms of "less than or equal to", for extended numbers which are rational or +oo. We have not yet had enough usage of such numbers to warrant fully developing the concept, as in NN0* or  RR*, so for now we just have a handful of theorems for what we need. (Contributed by Jim Kingdon, 5-Jun-2025.)
Assertion
Ref Expression
xqltnle  |-  ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo ) )  -> 
( A  <  B  <->  -.  B  <_  A )
)

Proof of Theorem xqltnle
StepHypRef Expression
1 qltnle 10333 . . . 4  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  <  B  <->  -.  B  <_  A )
)
21adantll 476 . . 3  |-  ( ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  /\  B  e.  QQ )  ->  ( A  <  B  <->  -.  B  <_  A ) )
3 simplr 528 . . . . . . 7  |-  ( ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  /\  B  = +oo )  ->  A  e.  QQ )
4 qre 9699 . . . . . . 7  |-  ( A  e.  QQ  ->  A  e.  RR )
53, 4syl 14 . . . . . 6  |-  ( ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  /\  B  = +oo )  ->  A  e.  RR )
65ltpnfd 9856 . . . . 5  |-  ( ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  /\  B  = +oo )  ->  A  < +oo )
7 simpr 110 . . . . 5  |-  ( ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  /\  B  = +oo )  ->  B  = +oo )
86, 7breqtrrd 4061 . . . 4  |-  ( ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  /\  B  = +oo )  ->  A  <  B )
95renepnfd 8077 . . . . . . 7  |-  ( ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  /\  B  = +oo )  ->  A  =/= +oo )
109neneqd 2388 . . . . . 6  |-  ( ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  /\  B  = +oo )  ->  -.  A  = +oo )
115rexrd 8076 . . . . . . 7  |-  ( ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  /\  B  = +oo )  ->  A  e.  RR* )
12 xgepnf 9891 . . . . . . 7  |-  ( A  e.  RR*  ->  ( +oo  <_  A  <->  A  = +oo ) )
1311, 12syl 14 . . . . . 6  |-  ( ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  /\  B  = +oo )  ->  ( +oo  <_  A  <->  A  = +oo ) )
1410, 13mtbird 674 . . . . 5  |-  ( ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  /\  B  = +oo )  ->  -. +oo 
<_  A )
157, 14eqnbrtrd 4051 . . . 4  |-  ( ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  /\  B  = +oo )  ->  -.  B  <_  A )
168, 152thd 175 . . 3  |-  ( ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  /\  B  = +oo )  ->  ( A  <  B  <->  -.  B  <_  A ) )
17 simplr 528 . . 3  |-  ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  ->  ( B  e.  QQ  \/  B  = +oo ) )
182, 16, 17mpjaodan 799 . 2  |-  ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  e.  QQ )  ->  ( A  <  B  <->  -.  B  <_  A ) )
19 simpr 110 . . . 4  |-  ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  = +oo )  ->  A  = +oo )
20 qre 9699 . . . . . . . . 9  |-  ( B  e.  QQ  ->  B  e.  RR )
2120rexrd 8076 . . . . . . . 8  |-  ( B  e.  QQ  ->  B  e.  RR* )
22 pnfxr 8079 . . . . . . . . 9  |- +oo  e.  RR*
23 eleq1 2259 . . . . . . . . 9  |-  ( B  = +oo  ->  ( B  e.  RR*  <-> +oo  e.  RR* ) )
2422, 23mpbiri 168 . . . . . . . 8  |-  ( B  = +oo  ->  B  e.  RR* )
2521, 24jaoi 717 . . . . . . 7  |-  ( ( B  e.  QQ  \/  B  = +oo )  ->  B  e.  RR* )
2625adantl 277 . . . . . 6  |-  ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo ) )  ->  B  e.  RR* )
27 pnfnlt 9862 . . . . . 6  |-  ( B  e.  RR*  ->  -. +oo  <  B )
2826, 27syl 14 . . . . 5  |-  ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo ) )  ->  -. +oo  <  B )
2928adantr 276 . . . 4  |-  ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  = +oo )  ->  -. +oo  <  B )
3019, 29eqnbrtrd 4051 . . 3  |-  ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  = +oo )  ->  -.  A  <  B )
31 pnfge 9864 . . . . . . 7  |-  ( B  e.  RR*  ->  B  <_ +oo )
3226, 31syl 14 . . . . . 6  |-  ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo ) )  ->  B  <_ +oo )
3332adantr 276 . . . . 5  |-  ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  = +oo )  ->  B  <_ +oo )
3433, 19breqtrrd 4061 . . . 4  |-  ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  = +oo )  ->  B  <_  A )
3534notnotd 631 . . 3  |-  ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  = +oo )  ->  -.  -.  B  <_  A )
3630, 352falsed 703 . 2  |-  ( ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo )
)  /\  A  = +oo )  ->  ( A  <  B  <->  -.  B  <_  A ) )
37 simpl 109 . 2  |-  ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo ) )  -> 
( A  e.  QQ  \/  A  = +oo ) )
3818, 36, 37mpjaodan 799 1  |-  ( ( ( A  e.  QQ  \/  A  = +oo )  /\  ( B  e.  QQ  \/  B  = +oo ) )  -> 
( A  <  B  <->  -.  B  <_  A )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2167   class class class wbr 4033   RRcr 7878   +oocpnf 8058   RR*cxr 8060    < clt 8061    <_ cle 8062   QQcq 9693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-n0 9250  df-z 9327  df-q 9694  df-rp 9729
This theorem is referenced by:  pcadd2  12510
  Copyright terms: Public domain W3C validator