ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmex Unicode version

Theorem dmex 4854
Description: The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Jul-2008.)
Hypothesis
Ref Expression
dmex.1  |-  A  e. 
_V
Assertion
Ref Expression
dmex  |-  dom  A  e.  _V

Proof of Theorem dmex
StepHypRef Expression
1 dmex.1 . 2  |-  A  e. 
_V
2 dmexg 4852 . 2  |-  ( A  e.  _V  ->  dom  A  e.  _V )
31, 2ax-mp 5 1  |-  dom  A  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2128   _Vcvv 2712   dom cdm 4588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4084  ax-pow 4137  ax-pr 4171  ax-un 4395
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-br 3968  df-opab 4028  df-cnv 4596  df-dm 4598  df-rn 4599
This theorem is referenced by:  ofmres  6086  fo1st  6107  tfrlem8  6267  rdgtfr  6323  rdgruledefgg  6324  rdgon  6335  mapprc  6599  ixpprc  6666  ixpssmap2g  6674  ixpssmapg  6675  bren  6694  brdomg  6695  fundmen  6753  xpassen  6777  mapen  6793  ssenen  6798  hashfacen  10718  shftfval  10732
  Copyright terms: Public domain W3C validator