ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmex Unicode version

Theorem dmex 4945
Description: The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Jul-2008.)
Hypothesis
Ref Expression
dmex.1  |-  A  e. 
_V
Assertion
Ref Expression
dmex  |-  dom  A  e.  _V

Proof of Theorem dmex
StepHypRef Expression
1 dmex.1 . 2  |-  A  e. 
_V
2 dmexg 4942 . 2  |-  ( A  e.  _V  ->  dom  A  e.  _V )
31, 2ax-mp 5 1  |-  dom  A  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2176   _Vcvv 2772   dom cdm 4675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-cnv 4683  df-dm 4685  df-rn 4686
This theorem is referenced by:  ofmres  6221  fo1st  6243  tfrlem8  6404  rdgtfr  6460  rdgruledefgg  6461  rdgon  6472  mapprc  6739  ixpprc  6806  ixpssmap2g  6814  ixpssmapg  6815  bren  6835  brdomg  6837  fundmen  6898  xpassen  6925  mapen  6943  ssenen  6948  hashfacen  10981  shftfval  11132  prdsvallem  13104  prdsval  13105  blfn  14313  metuex  14317
  Copyright terms: Public domain W3C validator