ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmex Unicode version

Theorem dmex 4905
Description: The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Jul-2008.)
Hypothesis
Ref Expression
dmex.1  |-  A  e. 
_V
Assertion
Ref Expression
dmex  |-  dom  A  e.  _V

Proof of Theorem dmex
StepHypRef Expression
1 dmex.1 . 2  |-  A  e. 
_V
2 dmexg 4903 . 2  |-  ( A  e.  _V  ->  dom  A  e.  _V )
31, 2ax-mp 5 1  |-  dom  A  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2158   _Vcvv 2749   dom cdm 4638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-rex 2471  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-cnv 4646  df-dm 4648  df-rn 4649
This theorem is referenced by:  ofmres  6150  fo1st  6171  tfrlem8  6332  rdgtfr  6388  rdgruledefgg  6389  rdgon  6400  mapprc  6665  ixpprc  6732  ixpssmap2g  6740  ixpssmapg  6741  bren  6760  brdomg  6761  fundmen  6819  xpassen  6843  mapen  6859  ssenen  6864  hashfacen  10829  shftfval  10843
  Copyright terms: Public domain W3C validator