ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oawordriexmid Unicode version

Theorem oawordriexmid 6523
Description: A weak ordering property of ordinal addition which implies excluded middle. The property is proposition 8.7 of [TakeutiZaring] p. 59. Compare with oawordi 6522. (Contributed by Jim Kingdon, 15-May-2022.)
Hypothesis
Ref Expression
oawordriexmid.1  |-  ( ( a  e.  On  /\  b  e.  On  /\  c  e.  On )  ->  (
a  C_  b  ->  ( a  +o  c ) 
C_  ( b  +o  c ) ) )
Assertion
Ref Expression
oawordriexmid  |-  ( ph  \/  -.  ph )
Distinct variable groups:    a, b, c    ph, a
Allowed substitution hints:    ph( b, c)

Proof of Theorem oawordriexmid
StepHypRef Expression
1 1on 6476 . . . . 5  |-  1o  e.  On
2 oawordriexmid.1 . . . . . . . 8  |-  ( ( a  e.  On  /\  b  e.  On  /\  c  e.  On )  ->  (
a  C_  b  ->  ( a  +o  c ) 
C_  ( b  +o  c ) ) )
323expa 1205 . . . . . . 7  |-  ( ( ( a  e.  On  /\  b  e.  On )  /\  c  e.  On )  ->  ( a  C_  b  ->  ( a  +o  c )  C_  (
b  +o  c ) ) )
43expcom 116 . . . . . 6  |-  ( c  e.  On  ->  (
( a  e.  On  /\  b  e.  On )  ->  ( a  C_  b  ->  ( a  +o  c )  C_  (
b  +o  c ) ) ) )
54rgen 2547 . . . . 5  |-  A. c  e.  On  ( ( a  e.  On  /\  b  e.  On )  ->  (
a  C_  b  ->  ( a  +o  c ) 
C_  ( b  +o  c ) ) )
6 oveq2 5926 . . . . . . . . 9  |-  ( c  =  1o  ->  (
a  +o  c )  =  ( a  +o  1o ) )
7 oveq2 5926 . . . . . . . . 9  |-  ( c  =  1o  ->  (
b  +o  c )  =  ( b  +o  1o ) )
86, 7sseq12d 3210 . . . . . . . 8  |-  ( c  =  1o  ->  (
( a  +o  c
)  C_  ( b  +o  c )  <->  ( a  +o  1o )  C_  (
b  +o  1o ) ) )
98imbi2d 230 . . . . . . 7  |-  ( c  =  1o  ->  (
( a  C_  b  ->  ( a  +o  c
)  C_  ( b  +o  c ) )  <->  ( a  C_  b  ->  ( a  +o  1o )  C_  (
b  +o  1o ) ) ) )
109imbi2d 230 . . . . . 6  |-  ( c  =  1o  ->  (
( ( a  e.  On  /\  b  e.  On )  ->  (
a  C_  b  ->  ( a  +o  c ) 
C_  ( b  +o  c ) ) )  <-> 
( ( a  e.  On  /\  b  e.  On )  ->  (
a  C_  b  ->  ( a  +o  1o ) 
C_  ( b  +o  1o ) ) ) ) )
1110rspcv 2860 . . . . 5  |-  ( 1o  e.  On  ->  ( A. c  e.  On  ( ( a  e.  On  /\  b  e.  On )  ->  (
a  C_  b  ->  ( a  +o  c ) 
C_  ( b  +o  c ) ) )  ->  ( ( a  e.  On  /\  b  e.  On )  ->  (
a  C_  b  ->  ( a  +o  1o ) 
C_  ( b  +o  1o ) ) ) ) )
121, 5, 11mp2 16 . . . 4  |-  ( ( a  e.  On  /\  b  e.  On )  ->  ( a  C_  b  ->  ( a  +o  1o )  C_  ( b  +o  1o ) ) )
13 oa1suc 6520 . . . . . 6  |-  ( a  e.  On  ->  (
a  +o  1o )  =  suc  a )
1413adantr 276 . . . . 5  |-  ( ( a  e.  On  /\  b  e.  On )  ->  ( a  +o  1o )  =  suc  a )
15 oa1suc 6520 . . . . . 6  |-  ( b  e.  On  ->  (
b  +o  1o )  =  suc  b )
1615adantl 277 . . . . 5  |-  ( ( a  e.  On  /\  b  e.  On )  ->  ( b  +o  1o )  =  suc  b )
1714, 16sseq12d 3210 . . . 4  |-  ( ( a  e.  On  /\  b  e.  On )  ->  ( ( a  +o  1o )  C_  (
b  +o  1o )  <->  suc  a  C_  suc  b
) )
1812, 17sylibd 149 . . 3  |-  ( ( a  e.  On  /\  b  e.  On )  ->  ( a  C_  b  ->  suc  a  C_  suc  b ) )
1918rgen2a 2548 . 2  |-  A. a  e.  On  A. b  e.  On  ( a  C_  b  ->  suc  a  C_  suc  b )
2019onsucsssucexmid 4559 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472    C_ wss 3153   Oncon0 4394   suc csuc 4396  (class class class)co 5918   1oc1o 6462    +o coa 6466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-oadd 6473
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator