ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oawordriexmid Unicode version

Theorem oawordriexmid 6556
Description: A weak ordering property of ordinal addition which implies excluded middle. The property is proposition 8.7 of [TakeutiZaring] p. 59. Compare with oawordi 6555. (Contributed by Jim Kingdon, 15-May-2022.)
Hypothesis
Ref Expression
oawordriexmid.1  |-  ( ( a  e.  On  /\  b  e.  On  /\  c  e.  On )  ->  (
a  C_  b  ->  ( a  +o  c ) 
C_  ( b  +o  c ) ) )
Assertion
Ref Expression
oawordriexmid  |-  ( ph  \/  -.  ph )
Distinct variable groups:    a, b, c    ph, a
Allowed substitution hints:    ph( b, c)

Proof of Theorem oawordriexmid
StepHypRef Expression
1 1on 6509 . . . . 5  |-  1o  e.  On
2 oawordriexmid.1 . . . . . . . 8  |-  ( ( a  e.  On  /\  b  e.  On  /\  c  e.  On )  ->  (
a  C_  b  ->  ( a  +o  c ) 
C_  ( b  +o  c ) ) )
323expa 1206 . . . . . . 7  |-  ( ( ( a  e.  On  /\  b  e.  On )  /\  c  e.  On )  ->  ( a  C_  b  ->  ( a  +o  c )  C_  (
b  +o  c ) ) )
43expcom 116 . . . . . 6  |-  ( c  e.  On  ->  (
( a  e.  On  /\  b  e.  On )  ->  ( a  C_  b  ->  ( a  +o  c )  C_  (
b  +o  c ) ) ) )
54rgen 2559 . . . . 5  |-  A. c  e.  On  ( ( a  e.  On  /\  b  e.  On )  ->  (
a  C_  b  ->  ( a  +o  c ) 
C_  ( b  +o  c ) ) )
6 oveq2 5952 . . . . . . . . 9  |-  ( c  =  1o  ->  (
a  +o  c )  =  ( a  +o  1o ) )
7 oveq2 5952 . . . . . . . . 9  |-  ( c  =  1o  ->  (
b  +o  c )  =  ( b  +o  1o ) )
86, 7sseq12d 3224 . . . . . . . 8  |-  ( c  =  1o  ->  (
( a  +o  c
)  C_  ( b  +o  c )  <->  ( a  +o  1o )  C_  (
b  +o  1o ) ) )
98imbi2d 230 . . . . . . 7  |-  ( c  =  1o  ->  (
( a  C_  b  ->  ( a  +o  c
)  C_  ( b  +o  c ) )  <->  ( a  C_  b  ->  ( a  +o  1o )  C_  (
b  +o  1o ) ) ) )
109imbi2d 230 . . . . . 6  |-  ( c  =  1o  ->  (
( ( a  e.  On  /\  b  e.  On )  ->  (
a  C_  b  ->  ( a  +o  c ) 
C_  ( b  +o  c ) ) )  <-> 
( ( a  e.  On  /\  b  e.  On )  ->  (
a  C_  b  ->  ( a  +o  1o ) 
C_  ( b  +o  1o ) ) ) ) )
1110rspcv 2873 . . . . 5  |-  ( 1o  e.  On  ->  ( A. c  e.  On  ( ( a  e.  On  /\  b  e.  On )  ->  (
a  C_  b  ->  ( a  +o  c ) 
C_  ( b  +o  c ) ) )  ->  ( ( a  e.  On  /\  b  e.  On )  ->  (
a  C_  b  ->  ( a  +o  1o ) 
C_  ( b  +o  1o ) ) ) ) )
121, 5, 11mp2 16 . . . 4  |-  ( ( a  e.  On  /\  b  e.  On )  ->  ( a  C_  b  ->  ( a  +o  1o )  C_  ( b  +o  1o ) ) )
13 oa1suc 6553 . . . . . 6  |-  ( a  e.  On  ->  (
a  +o  1o )  =  suc  a )
1413adantr 276 . . . . 5  |-  ( ( a  e.  On  /\  b  e.  On )  ->  ( a  +o  1o )  =  suc  a )
15 oa1suc 6553 . . . . . 6  |-  ( b  e.  On  ->  (
b  +o  1o )  =  suc  b )
1615adantl 277 . . . . 5  |-  ( ( a  e.  On  /\  b  e.  On )  ->  ( b  +o  1o )  =  suc  b )
1714, 16sseq12d 3224 . . . 4  |-  ( ( a  e.  On  /\  b  e.  On )  ->  ( ( a  +o  1o )  C_  (
b  +o  1o )  <->  suc  a  C_  suc  b
) )
1812, 17sylibd 149 . . 3  |-  ( ( a  e.  On  /\  b  e.  On )  ->  ( a  C_  b  ->  suc  a  C_  suc  b ) )
1918rgen2a 2560 . 2  |-  A. a  e.  On  A. b  e.  On  ( a  C_  b  ->  suc  a  C_  suc  b )
2019onsucsssucexmid 4575 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484    C_ wss 3166   Oncon0 4410   suc csuc 4412  (class class class)co 5944   1oc1o 6495    +o coa 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-1o 6502  df-oadd 6506
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator