ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oawordriexmid Unicode version

Theorem oawordriexmid 6474
Description: A weak ordering property of ordinal addition which implies excluded middle. The property is proposition 8.7 of [TakeutiZaring] p. 59. Compare with oawordi 6473. (Contributed by Jim Kingdon, 15-May-2022.)
Hypothesis
Ref Expression
oawordriexmid.1  |-  ( ( a  e.  On  /\  b  e.  On  /\  c  e.  On )  ->  (
a  C_  b  ->  ( a  +o  c ) 
C_  ( b  +o  c ) ) )
Assertion
Ref Expression
oawordriexmid  |-  ( ph  \/  -.  ph )
Distinct variable groups:    a, b, c    ph, a
Allowed substitution hints:    ph( b, c)

Proof of Theorem oawordriexmid
StepHypRef Expression
1 1on 6427 . . . . 5  |-  1o  e.  On
2 oawordriexmid.1 . . . . . . . 8  |-  ( ( a  e.  On  /\  b  e.  On  /\  c  e.  On )  ->  (
a  C_  b  ->  ( a  +o  c ) 
C_  ( b  +o  c ) ) )
323expa 1203 . . . . . . 7  |-  ( ( ( a  e.  On  /\  b  e.  On )  /\  c  e.  On )  ->  ( a  C_  b  ->  ( a  +o  c )  C_  (
b  +o  c ) ) )
43expcom 116 . . . . . 6  |-  ( c  e.  On  ->  (
( a  e.  On  /\  b  e.  On )  ->  ( a  C_  b  ->  ( a  +o  c )  C_  (
b  +o  c ) ) ) )
54rgen 2530 . . . . 5  |-  A. c  e.  On  ( ( a  e.  On  /\  b  e.  On )  ->  (
a  C_  b  ->  ( a  +o  c ) 
C_  ( b  +o  c ) ) )
6 oveq2 5886 . . . . . . . . 9  |-  ( c  =  1o  ->  (
a  +o  c )  =  ( a  +o  1o ) )
7 oveq2 5886 . . . . . . . . 9  |-  ( c  =  1o  ->  (
b  +o  c )  =  ( b  +o  1o ) )
86, 7sseq12d 3188 . . . . . . . 8  |-  ( c  =  1o  ->  (
( a  +o  c
)  C_  ( b  +o  c )  <->  ( a  +o  1o )  C_  (
b  +o  1o ) ) )
98imbi2d 230 . . . . . . 7  |-  ( c  =  1o  ->  (
( a  C_  b  ->  ( a  +o  c
)  C_  ( b  +o  c ) )  <->  ( a  C_  b  ->  ( a  +o  1o )  C_  (
b  +o  1o ) ) ) )
109imbi2d 230 . . . . . 6  |-  ( c  =  1o  ->  (
( ( a  e.  On  /\  b  e.  On )  ->  (
a  C_  b  ->  ( a  +o  c ) 
C_  ( b  +o  c ) ) )  <-> 
( ( a  e.  On  /\  b  e.  On )  ->  (
a  C_  b  ->  ( a  +o  1o ) 
C_  ( b  +o  1o ) ) ) ) )
1110rspcv 2839 . . . . 5  |-  ( 1o  e.  On  ->  ( A. c  e.  On  ( ( a  e.  On  /\  b  e.  On )  ->  (
a  C_  b  ->  ( a  +o  c ) 
C_  ( b  +o  c ) ) )  ->  ( ( a  e.  On  /\  b  e.  On )  ->  (
a  C_  b  ->  ( a  +o  1o ) 
C_  ( b  +o  1o ) ) ) ) )
121, 5, 11mp2 16 . . . 4  |-  ( ( a  e.  On  /\  b  e.  On )  ->  ( a  C_  b  ->  ( a  +o  1o )  C_  ( b  +o  1o ) ) )
13 oa1suc 6471 . . . . . 6  |-  ( a  e.  On  ->  (
a  +o  1o )  =  suc  a )
1413adantr 276 . . . . 5  |-  ( ( a  e.  On  /\  b  e.  On )  ->  ( a  +o  1o )  =  suc  a )
15 oa1suc 6471 . . . . . 6  |-  ( b  e.  On  ->  (
b  +o  1o )  =  suc  b )
1615adantl 277 . . . . 5  |-  ( ( a  e.  On  /\  b  e.  On )  ->  ( b  +o  1o )  =  suc  b )
1714, 16sseq12d 3188 . . . 4  |-  ( ( a  e.  On  /\  b  e.  On )  ->  ( ( a  +o  1o )  C_  (
b  +o  1o )  <->  suc  a  C_  suc  b
) )
1812, 17sylibd 149 . . 3  |-  ( ( a  e.  On  /\  b  e.  On )  ->  ( a  C_  b  ->  suc  a  C_  suc  b ) )
1918rgen2a 2531 . 2  |-  A. a  e.  On  A. b  e.  On  ( a  C_  b  ->  suc  a  C_  suc  b )
2019onsucsssucexmid 4528 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455    C_ wss 3131   Oncon0 4365   suc csuc 4367  (class class class)co 5878   1oc1o 6413    +o coa 6417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-irdg 6374  df-1o 6420  df-oadd 6424
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator