Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > domfiexmid | Unicode version |
Description: If any set dominated by a finite set is finite, excluded middle follows. (Contributed by Jim Kingdon, 3-Feb-2022.) |
Ref | Expression |
---|---|
domfiexmid.1 |
Ref | Expression |
---|---|
domfiexmid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4125 | . . . 4 | |
2 | snfig 6804 | . . . 4 | |
3 | 1, 2 | ax-mp 5 | . . 3 |
4 | ssrab2 3238 | . . . 4 | |
5 | ssdomg 6768 | . . . 4 | |
6 | 3, 4, 5 | mp2 16 | . . 3 |
7 | domfiexmid.1 | . . . . . 6 | |
8 | 7 | gen2 1448 | . . . . 5 |
9 | p0ex 4183 | . . . . . 6 | |
10 | eleq1 2238 | . . . . . . . . 9 | |
11 | breq2 4002 | . . . . . . . . 9 | |
12 | 10, 11 | anbi12d 473 | . . . . . . . 8 |
13 | 12 | imbi1d 231 | . . . . . . 7 |
14 | 13 | albidv 1822 | . . . . . 6 |
15 | 9, 14 | spcv 2829 | . . . . 5 |
16 | 8, 15 | ax-mp 5 | . . . 4 |
17 | 9 | rabex 4142 | . . . . 5 |
18 | breq1 4001 | . . . . . . 7 | |
19 | 18 | anbi2d 464 | . . . . . 6 |
20 | eleq1 2238 | . . . . . 6 | |
21 | 19, 20 | imbi12d 234 | . . . . 5 |
22 | 17, 21 | spcv 2829 | . . . 4 |
23 | 16, 22 | ax-mp 5 | . . 3 |
24 | 3, 6, 23 | mp2an 426 | . 2 |
25 | 24 | ssfilem 6865 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 104 wo 708 wal 1351 wceq 1353 wcel 2146 crab 2457 cvv 2735 wss 3127 c0 3420 csn 3589 class class class wbr 3998 cdom 6729 cfn 6730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-iinf 4581 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-id 4287 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-1o 6407 df-er 6525 df-en 6731 df-dom 6732 df-fin 6733 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |