ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  domfiexmid Unicode version

Theorem domfiexmid 6772
Description: If any set dominated by a finite set is finite, excluded middle follows. (Contributed by Jim Kingdon, 3-Feb-2022.)
Hypothesis
Ref Expression
domfiexmid.1  |-  ( ( x  e.  Fin  /\  y  ~<_  x )  -> 
y  e.  Fin )
Assertion
Ref Expression
domfiexmid  |-  ( ph  \/  -.  ph )
Distinct variable groups:    ph, y    x, y
Allowed substitution hint:    ph( x)

Proof of Theorem domfiexmid
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 0ex 4055 . . . 4  |-  (/)  e.  _V
2 snfig 6708 . . . 4  |-  ( (/)  e.  _V  ->  { (/) }  e.  Fin )
31, 2ax-mp 5 . . 3  |-  { (/) }  e.  Fin
4 ssrab2 3182 . . . 4  |-  { z  e.  { (/) }  |  ph }  C_  { (/) }
5 ssdomg 6672 . . . 4  |-  ( {
(/) }  e.  Fin  ->  ( { z  e. 
{ (/) }  |  ph }  C_  { (/) }  ->  { z  e.  { (/) }  |  ph }  ~<_  { (/) } ) )
63, 4, 5mp2 16 . . 3  |-  { z  e.  { (/) }  |  ph }  ~<_  { (/) }
7 domfiexmid.1 . . . . . 6  |-  ( ( x  e.  Fin  /\  y  ~<_  x )  -> 
y  e.  Fin )
87gen2 1426 . . . . 5  |-  A. x A. y ( ( x  e.  Fin  /\  y  ~<_  x )  ->  y  e.  Fin )
9 p0ex 4112 . . . . . 6  |-  { (/) }  e.  _V
10 eleq1 2202 . . . . . . . . 9  |-  ( x  =  { (/) }  ->  ( x  e.  Fin  <->  { (/) }  e.  Fin ) )
11 breq2 3933 . . . . . . . . 9  |-  ( x  =  { (/) }  ->  ( y  ~<_  x  <->  y  ~<_  { (/) } ) )
1210, 11anbi12d 464 . . . . . . . 8  |-  ( x  =  { (/) }  ->  ( ( x  e.  Fin  /\  y  ~<_  x )  <->  ( { (/)
}  e.  Fin  /\  y  ~<_  { (/) } ) ) )
1312imbi1d 230 . . . . . . 7  |-  ( x  =  { (/) }  ->  ( ( ( x  e. 
Fin  /\  y  ~<_  x )  ->  y  e.  Fin ) 
<->  ( ( { (/) }  e.  Fin  /\  y  ~<_  { (/) } )  -> 
y  e.  Fin )
) )
1413albidv 1796 . . . . . 6  |-  ( x  =  { (/) }  ->  ( A. y ( ( x  e.  Fin  /\  y  ~<_  x )  -> 
y  e.  Fin )  <->  A. y ( ( {
(/) }  e.  Fin  /\  y  ~<_  { (/) } )  ->  y  e.  Fin ) ) )
159, 14spcv 2779 . . . . 5  |-  ( A. x A. y ( ( x  e.  Fin  /\  y  ~<_  x )  -> 
y  e.  Fin )  ->  A. y ( ( { (/) }  e.  Fin  /\  y  ~<_  { (/) } )  ->  y  e.  Fin ) )
168, 15ax-mp 5 . . . 4  |-  A. y
( ( { (/) }  e.  Fin  /\  y  ~<_  { (/) } )  -> 
y  e.  Fin )
179rabex 4072 . . . . 5  |-  { z  e.  { (/) }  |  ph }  e.  _V
18 breq1 3932 . . . . . . 7  |-  ( y  =  { z  e. 
{ (/) }  |  ph }  ->  ( y  ~<_  {
(/) }  <->  { z  e.  { (/)
}  |  ph }  ~<_  { (/) } ) )
1918anbi2d 459 . . . . . 6  |-  ( y  =  { z  e. 
{ (/) }  |  ph }  ->  ( ( {
(/) }  e.  Fin  /\  y  ~<_  { (/) } )  <-> 
( { (/) }  e.  Fin  /\  { z  e. 
{ (/) }  |  ph }  ~<_  { (/) } ) ) )
20 eleq1 2202 . . . . . 6  |-  ( y  =  { z  e. 
{ (/) }  |  ph }  ->  ( y  e. 
Fin 
<->  { z  e.  { (/)
}  |  ph }  e.  Fin ) )
2119, 20imbi12d 233 . . . . 5  |-  ( y  =  { z  e. 
{ (/) }  |  ph }  ->  ( ( ( { (/) }  e.  Fin  /\  y  ~<_  { (/) } )  ->  y  e.  Fin ) 
<->  ( ( { (/) }  e.  Fin  /\  {
z  e.  { (/) }  |  ph }  ~<_  { (/) } )  ->  { z  e.  { (/) }  |  ph }  e.  Fin )
) )
2217, 21spcv 2779 . . . 4  |-  ( A. y ( ( {
(/) }  e.  Fin  /\  y  ~<_  { (/) } )  ->  y  e.  Fin )  ->  ( ( {
(/) }  e.  Fin  /\ 
{ z  e.  { (/)
}  |  ph }  ~<_  { (/) } )  ->  { z  e.  { (/)
}  |  ph }  e.  Fin ) )
2316, 22ax-mp 5 . . 3  |-  ( ( { (/) }  e.  Fin  /\ 
{ z  e.  { (/)
}  |  ph }  ~<_  { (/) } )  ->  { z  e.  { (/)
}  |  ph }  e.  Fin )
243, 6, 23mp2an 422 . 2  |-  { z  e.  { (/) }  |  ph }  e.  Fin
2524ssfilem 6769 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 697   A.wal 1329    = wceq 1331    e. wcel 1480   {crab 2420   _Vcvv 2686    C_ wss 3071   (/)c0 3363   {csn 3527   class class class wbr 3929    ~<_ cdom 6633   Fincfn 6634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1o 6313  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator