ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  domfiexmid Unicode version

Theorem domfiexmid 6975
Description: If any set dominated by a finite set is finite, excluded middle follows. (Contributed by Jim Kingdon, 3-Feb-2022.)
Hypothesis
Ref Expression
domfiexmid.1  |-  ( ( x  e.  Fin  /\  y  ~<_  x )  -> 
y  e.  Fin )
Assertion
Ref Expression
domfiexmid  |-  ( ph  \/  -.  ph )
Distinct variable groups:    ph, y    x, y
Allowed substitution hint:    ph( x)

Proof of Theorem domfiexmid
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 0ex 4171 . . . 4  |-  (/)  e.  _V
2 snfig 6906 . . . 4  |-  ( (/)  e.  _V  ->  { (/) }  e.  Fin )
31, 2ax-mp 5 . . 3  |-  { (/) }  e.  Fin
4 ssrab2 3278 . . . 4  |-  { z  e.  { (/) }  |  ph }  C_  { (/) }
5 ssdomg 6870 . . . 4  |-  ( {
(/) }  e.  Fin  ->  ( { z  e. 
{ (/) }  |  ph }  C_  { (/) }  ->  { z  e.  { (/) }  |  ph }  ~<_  { (/) } ) )
63, 4, 5mp2 16 . . 3  |-  { z  e.  { (/) }  |  ph }  ~<_  { (/) }
7 domfiexmid.1 . . . . . 6  |-  ( ( x  e.  Fin  /\  y  ~<_  x )  -> 
y  e.  Fin )
87gen2 1473 . . . . 5  |-  A. x A. y ( ( x  e.  Fin  /\  y  ~<_  x )  ->  y  e.  Fin )
9 p0ex 4232 . . . . . 6  |-  { (/) }  e.  _V
10 eleq1 2268 . . . . . . . . 9  |-  ( x  =  { (/) }  ->  ( x  e.  Fin  <->  { (/) }  e.  Fin ) )
11 breq2 4048 . . . . . . . . 9  |-  ( x  =  { (/) }  ->  ( y  ~<_  x  <->  y  ~<_  { (/) } ) )
1210, 11anbi12d 473 . . . . . . . 8  |-  ( x  =  { (/) }  ->  ( ( x  e.  Fin  /\  y  ~<_  x )  <->  ( { (/)
}  e.  Fin  /\  y  ~<_  { (/) } ) ) )
1312imbi1d 231 . . . . . . 7  |-  ( x  =  { (/) }  ->  ( ( ( x  e. 
Fin  /\  y  ~<_  x )  ->  y  e.  Fin ) 
<->  ( ( { (/) }  e.  Fin  /\  y  ~<_  { (/) } )  -> 
y  e.  Fin )
) )
1413albidv 1847 . . . . . 6  |-  ( x  =  { (/) }  ->  ( A. y ( ( x  e.  Fin  /\  y  ~<_  x )  -> 
y  e.  Fin )  <->  A. y ( ( {
(/) }  e.  Fin  /\  y  ~<_  { (/) } )  ->  y  e.  Fin ) ) )
159, 14spcv 2867 . . . . 5  |-  ( A. x A. y ( ( x  e.  Fin  /\  y  ~<_  x )  -> 
y  e.  Fin )  ->  A. y ( ( { (/) }  e.  Fin  /\  y  ~<_  { (/) } )  ->  y  e.  Fin ) )
168, 15ax-mp 5 . . . 4  |-  A. y
( ( { (/) }  e.  Fin  /\  y  ~<_  { (/) } )  -> 
y  e.  Fin )
179rabex 4188 . . . . 5  |-  { z  e.  { (/) }  |  ph }  e.  _V
18 breq1 4047 . . . . . . 7  |-  ( y  =  { z  e. 
{ (/) }  |  ph }  ->  ( y  ~<_  {
(/) }  <->  { z  e.  { (/)
}  |  ph }  ~<_  { (/) } ) )
1918anbi2d 464 . . . . . 6  |-  ( y  =  { z  e. 
{ (/) }  |  ph }  ->  ( ( {
(/) }  e.  Fin  /\  y  ~<_  { (/) } )  <-> 
( { (/) }  e.  Fin  /\  { z  e. 
{ (/) }  |  ph }  ~<_  { (/) } ) ) )
20 eleq1 2268 . . . . . 6  |-  ( y  =  { z  e. 
{ (/) }  |  ph }  ->  ( y  e. 
Fin 
<->  { z  e.  { (/)
}  |  ph }  e.  Fin ) )
2119, 20imbi12d 234 . . . . 5  |-  ( y  =  { z  e. 
{ (/) }  |  ph }  ->  ( ( ( { (/) }  e.  Fin  /\  y  ~<_  { (/) } )  ->  y  e.  Fin ) 
<->  ( ( { (/) }  e.  Fin  /\  {
z  e.  { (/) }  |  ph }  ~<_  { (/) } )  ->  { z  e.  { (/) }  |  ph }  e.  Fin )
) )
2217, 21spcv 2867 . . . 4  |-  ( A. y ( ( {
(/) }  e.  Fin  /\  y  ~<_  { (/) } )  ->  y  e.  Fin )  ->  ( ( {
(/) }  e.  Fin  /\ 
{ z  e.  { (/)
}  |  ph }  ~<_  { (/) } )  ->  { z  e.  { (/)
}  |  ph }  e.  Fin ) )
2316, 22ax-mp 5 . . 3  |-  ( ( { (/) }  e.  Fin  /\ 
{ z  e.  { (/)
}  |  ph }  ~<_  { (/) } )  ->  { z  e.  { (/)
}  |  ph }  e.  Fin )
243, 6, 23mp2an 426 . 2  |-  { z  e.  { (/) }  |  ph }  e.  Fin
2524ssfilem 6972 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710   A.wal 1371    = wceq 1373    e. wcel 2176   {crab 2488   _Vcvv 2772    C_ wss 3166   (/)c0 3460   {csn 3633   class class class wbr 4044    ~<_ cdom 6826   Fincfn 6827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-id 4340  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-1o 6502  df-er 6620  df-en 6828  df-dom 6829  df-fin 6830
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator