| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > domfiexmid | Unicode version | ||
| Description: If any set dominated by a finite set is finite, excluded middle follows. (Contributed by Jim Kingdon, 3-Feb-2022.) |
| Ref | Expression |
|---|---|
| domfiexmid.1 |
|
| Ref | Expression |
|---|---|
| domfiexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4211 |
. . . 4
| |
| 2 | snfig 6967 |
. . . 4
| |
| 3 | 1, 2 | ax-mp 5 |
. . 3
|
| 4 | ssrab2 3309 |
. . . 4
| |
| 5 | ssdomg 6930 |
. . . 4
| |
| 6 | 3, 4, 5 | mp2 16 |
. . 3
|
| 7 | domfiexmid.1 |
. . . . . 6
| |
| 8 | 7 | gen2 1496 |
. . . . 5
|
| 9 | p0ex 4272 |
. . . . . 6
| |
| 10 | eleq1 2292 |
. . . . . . . . 9
| |
| 11 | breq2 4087 |
. . . . . . . . 9
| |
| 12 | 10, 11 | anbi12d 473 |
. . . . . . . 8
|
| 13 | 12 | imbi1d 231 |
. . . . . . 7
|
| 14 | 13 | albidv 1870 |
. . . . . 6
|
| 15 | 9, 14 | spcv 2897 |
. . . . 5
|
| 16 | 8, 15 | ax-mp 5 |
. . . 4
|
| 17 | 9 | rabex 4228 |
. . . . 5
|
| 18 | breq1 4086 |
. . . . . . 7
| |
| 19 | 18 | anbi2d 464 |
. . . . . 6
|
| 20 | eleq1 2292 |
. . . . . 6
| |
| 21 | 19, 20 | imbi12d 234 |
. . . . 5
|
| 22 | 17, 21 | spcv 2897 |
. . . 4
|
| 23 | 16, 22 | ax-mp 5 |
. . 3
|
| 24 | 3, 6, 23 | mp2an 426 |
. 2
|
| 25 | 24 | ssfilem 7037 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-1o 6562 df-er 6680 df-en 6888 df-dom 6889 df-fin 6890 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |