ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  domfiexmid Unicode version

Theorem domfiexmid 6910
Description: If any set dominated by a finite set is finite, excluded middle follows. (Contributed by Jim Kingdon, 3-Feb-2022.)
Hypothesis
Ref Expression
domfiexmid.1  |-  ( ( x  e.  Fin  /\  y  ~<_  x )  -> 
y  e.  Fin )
Assertion
Ref Expression
domfiexmid  |-  ( ph  \/  -.  ph )
Distinct variable groups:    ph, y    x, y
Allowed substitution hint:    ph( x)

Proof of Theorem domfiexmid
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 0ex 4148 . . . 4  |-  (/)  e.  _V
2 snfig 6844 . . . 4  |-  ( (/)  e.  _V  ->  { (/) }  e.  Fin )
31, 2ax-mp 5 . . 3  |-  { (/) }  e.  Fin
4 ssrab2 3255 . . . 4  |-  { z  e.  { (/) }  |  ph }  C_  { (/) }
5 ssdomg 6808 . . . 4  |-  ( {
(/) }  e.  Fin  ->  ( { z  e. 
{ (/) }  |  ph }  C_  { (/) }  ->  { z  e.  { (/) }  |  ph }  ~<_  { (/) } ) )
63, 4, 5mp2 16 . . 3  |-  { z  e.  { (/) }  |  ph }  ~<_  { (/) }
7 domfiexmid.1 . . . . . 6  |-  ( ( x  e.  Fin  /\  y  ~<_  x )  -> 
y  e.  Fin )
87gen2 1461 . . . . 5  |-  A. x A. y ( ( x  e.  Fin  /\  y  ~<_  x )  ->  y  e.  Fin )
9 p0ex 4209 . . . . . 6  |-  { (/) }  e.  _V
10 eleq1 2252 . . . . . . . . 9  |-  ( x  =  { (/) }  ->  ( x  e.  Fin  <->  { (/) }  e.  Fin ) )
11 breq2 4025 . . . . . . . . 9  |-  ( x  =  { (/) }  ->  ( y  ~<_  x  <->  y  ~<_  { (/) } ) )
1210, 11anbi12d 473 . . . . . . . 8  |-  ( x  =  { (/) }  ->  ( ( x  e.  Fin  /\  y  ~<_  x )  <->  ( { (/)
}  e.  Fin  /\  y  ~<_  { (/) } ) ) )
1312imbi1d 231 . . . . . . 7  |-  ( x  =  { (/) }  ->  ( ( ( x  e. 
Fin  /\  y  ~<_  x )  ->  y  e.  Fin ) 
<->  ( ( { (/) }  e.  Fin  /\  y  ~<_  { (/) } )  -> 
y  e.  Fin )
) )
1413albidv 1835 . . . . . 6  |-  ( x  =  { (/) }  ->  ( A. y ( ( x  e.  Fin  /\  y  ~<_  x )  -> 
y  e.  Fin )  <->  A. y ( ( {
(/) }  e.  Fin  /\  y  ~<_  { (/) } )  ->  y  e.  Fin ) ) )
159, 14spcv 2846 . . . . 5  |-  ( A. x A. y ( ( x  e.  Fin  /\  y  ~<_  x )  -> 
y  e.  Fin )  ->  A. y ( ( { (/) }  e.  Fin  /\  y  ~<_  { (/) } )  ->  y  e.  Fin ) )
168, 15ax-mp 5 . . . 4  |-  A. y
( ( { (/) }  e.  Fin  /\  y  ~<_  { (/) } )  -> 
y  e.  Fin )
179rabex 4165 . . . . 5  |-  { z  e.  { (/) }  |  ph }  e.  _V
18 breq1 4024 . . . . . . 7  |-  ( y  =  { z  e. 
{ (/) }  |  ph }  ->  ( y  ~<_  {
(/) }  <->  { z  e.  { (/)
}  |  ph }  ~<_  { (/) } ) )
1918anbi2d 464 . . . . . 6  |-  ( y  =  { z  e. 
{ (/) }  |  ph }  ->  ( ( {
(/) }  e.  Fin  /\  y  ~<_  { (/) } )  <-> 
( { (/) }  e.  Fin  /\  { z  e. 
{ (/) }  |  ph }  ~<_  { (/) } ) ) )
20 eleq1 2252 . . . . . 6  |-  ( y  =  { z  e. 
{ (/) }  |  ph }  ->  ( y  e. 
Fin 
<->  { z  e.  { (/)
}  |  ph }  e.  Fin ) )
2119, 20imbi12d 234 . . . . 5  |-  ( y  =  { z  e. 
{ (/) }  |  ph }  ->  ( ( ( { (/) }  e.  Fin  /\  y  ~<_  { (/) } )  ->  y  e.  Fin ) 
<->  ( ( { (/) }  e.  Fin  /\  {
z  e.  { (/) }  |  ph }  ~<_  { (/) } )  ->  { z  e.  { (/) }  |  ph }  e.  Fin )
) )
2217, 21spcv 2846 . . . 4  |-  ( A. y ( ( {
(/) }  e.  Fin  /\  y  ~<_  { (/) } )  ->  y  e.  Fin )  ->  ( ( {
(/) }  e.  Fin  /\ 
{ z  e.  { (/)
}  |  ph }  ~<_  { (/) } )  ->  { z  e.  { (/)
}  |  ph }  e.  Fin ) )
2316, 22ax-mp 5 . . 3  |-  ( ( { (/) }  e.  Fin  /\ 
{ z  e.  { (/)
}  |  ph }  ~<_  { (/) } )  ->  { z  e.  { (/)
}  |  ph }  e.  Fin )
243, 6, 23mp2an 426 . 2  |-  { z  e.  { (/) }  |  ph }  e.  Fin
2524ssfilem 6907 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709   A.wal 1362    = wceq 1364    e. wcel 2160   {crab 2472   _Vcvv 2752    C_ wss 3144   (/)c0 3437   {csn 3610   class class class wbr 4021    ~<_ cdom 6769   Fincfn 6770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-nul 4147  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-iinf 4608
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-br 4022  df-opab 4083  df-id 4314  df-suc 4392  df-iom 4611  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-1o 6445  df-er 6563  df-en 6771  df-dom 6772  df-fin 6773
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator