ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  domfiexmid Unicode version

Theorem domfiexmid 6674
Description: If any set dominated by a finite set is finite, excluded middle follows. (Contributed by Jim Kingdon, 3-Feb-2022.)
Hypothesis
Ref Expression
domfiexmid.1  |-  ( ( x  e.  Fin  /\  y  ~<_  x )  -> 
y  e.  Fin )
Assertion
Ref Expression
domfiexmid  |-  ( ph  \/  -.  ph )
Distinct variable groups:    ph, y    x, y
Allowed substitution hint:    ph( x)

Proof of Theorem domfiexmid
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 0ex 3987 . . . 4  |-  (/)  e.  _V
2 snfig 6611 . . . 4  |-  ( (/)  e.  _V  ->  { (/) }  e.  Fin )
31, 2ax-mp 7 . . 3  |-  { (/) }  e.  Fin
4 ssrab2 3121 . . . 4  |-  { z  e.  { (/) }  |  ph }  C_  { (/) }
5 ssdomg 6575 . . . 4  |-  ( {
(/) }  e.  Fin  ->  ( { z  e. 
{ (/) }  |  ph }  C_  { (/) }  ->  { z  e.  { (/) }  |  ph }  ~<_  { (/) } ) )
63, 4, 5mp2 16 . . 3  |-  { z  e.  { (/) }  |  ph }  ~<_  { (/) }
7 domfiexmid.1 . . . . . 6  |-  ( ( x  e.  Fin  /\  y  ~<_  x )  -> 
y  e.  Fin )
87gen2 1391 . . . . 5  |-  A. x A. y ( ( x  e.  Fin  /\  y  ~<_  x )  ->  y  e.  Fin )
9 p0ex 4044 . . . . . 6  |-  { (/) }  e.  _V
10 eleq1 2157 . . . . . . . . 9  |-  ( x  =  { (/) }  ->  ( x  e.  Fin  <->  { (/) }  e.  Fin ) )
11 breq2 3871 . . . . . . . . 9  |-  ( x  =  { (/) }  ->  ( y  ~<_  x  <->  y  ~<_  { (/) } ) )
1210, 11anbi12d 458 . . . . . . . 8  |-  ( x  =  { (/) }  ->  ( ( x  e.  Fin  /\  y  ~<_  x )  <->  ( { (/)
}  e.  Fin  /\  y  ~<_  { (/) } ) ) )
1312imbi1d 230 . . . . . . 7  |-  ( x  =  { (/) }  ->  ( ( ( x  e. 
Fin  /\  y  ~<_  x )  ->  y  e.  Fin ) 
<->  ( ( { (/) }  e.  Fin  /\  y  ~<_  { (/) } )  -> 
y  e.  Fin )
) )
1413albidv 1759 . . . . . 6  |-  ( x  =  { (/) }  ->  ( A. y ( ( x  e.  Fin  /\  y  ~<_  x )  -> 
y  e.  Fin )  <->  A. y ( ( {
(/) }  e.  Fin  /\  y  ~<_  { (/) } )  ->  y  e.  Fin ) ) )
159, 14spcv 2726 . . . . 5  |-  ( A. x A. y ( ( x  e.  Fin  /\  y  ~<_  x )  -> 
y  e.  Fin )  ->  A. y ( ( { (/) }  e.  Fin  /\  y  ~<_  { (/) } )  ->  y  e.  Fin ) )
168, 15ax-mp 7 . . . 4  |-  A. y
( ( { (/) }  e.  Fin  /\  y  ~<_  { (/) } )  -> 
y  e.  Fin )
179rabex 4004 . . . . 5  |-  { z  e.  { (/) }  |  ph }  e.  _V
18 breq1 3870 . . . . . . 7  |-  ( y  =  { z  e. 
{ (/) }  |  ph }  ->  ( y  ~<_  {
(/) }  <->  { z  e.  { (/)
}  |  ph }  ~<_  { (/) } ) )
1918anbi2d 453 . . . . . 6  |-  ( y  =  { z  e. 
{ (/) }  |  ph }  ->  ( ( {
(/) }  e.  Fin  /\  y  ~<_  { (/) } )  <-> 
( { (/) }  e.  Fin  /\  { z  e. 
{ (/) }  |  ph }  ~<_  { (/) } ) ) )
20 eleq1 2157 . . . . . 6  |-  ( y  =  { z  e. 
{ (/) }  |  ph }  ->  ( y  e. 
Fin 
<->  { z  e.  { (/)
}  |  ph }  e.  Fin ) )
2119, 20imbi12d 233 . . . . 5  |-  ( y  =  { z  e. 
{ (/) }  |  ph }  ->  ( ( ( { (/) }  e.  Fin  /\  y  ~<_  { (/) } )  ->  y  e.  Fin ) 
<->  ( ( { (/) }  e.  Fin  /\  {
z  e.  { (/) }  |  ph }  ~<_  { (/) } )  ->  { z  e.  { (/) }  |  ph }  e.  Fin )
) )
2217, 21spcv 2726 . . . 4  |-  ( A. y ( ( {
(/) }  e.  Fin  /\  y  ~<_  { (/) } )  ->  y  e.  Fin )  ->  ( ( {
(/) }  e.  Fin  /\ 
{ z  e.  { (/)
}  |  ph }  ~<_  { (/) } )  ->  { z  e.  { (/)
}  |  ph }  e.  Fin ) )
2316, 22ax-mp 7 . . 3  |-  ( ( { (/) }  e.  Fin  /\ 
{ z  e.  { (/)
}  |  ph }  ~<_  { (/) } )  ->  { z  e.  { (/)
}  |  ph }  e.  Fin )
243, 6, 23mp2an 418 . 2  |-  { z  e.  { (/) }  |  ph }  e.  Fin
2524ssfilem 6671 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 667   A.wal 1294    = wceq 1296    e. wcel 1445   {crab 2374   _Vcvv 2633    C_ wss 3013   (/)c0 3302   {csn 3466   class class class wbr 3867    ~<_ cdom 6536   Fincfn 6537
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-iinf 4431
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-rab 2379  df-v 2635  df-sbc 2855  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-br 3868  df-opab 3922  df-id 4144  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-1o 6219  df-er 6332  df-en 6538  df-dom 6539  df-fin 6540
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator