ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptfng GIF version

Theorem mptfng 5313
Description: The maps-to notation defines a function with domain. (Contributed by Scott Fenton, 21-Mar-2011.)
Hypothesis
Ref Expression
mptfng.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
mptfng (∀𝑥𝐴 𝐵 ∈ V ↔ 𝐹 Fn 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem mptfng
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eueq 2897 . . 3 (𝐵 ∈ V ↔ ∃!𝑦 𝑦 = 𝐵)
21ralbii 2472 . 2 (∀𝑥𝐴 𝐵 ∈ V ↔ ∀𝑥𝐴 ∃!𝑦 𝑦 = 𝐵)
3 mptfng.1 . . . 4 𝐹 = (𝑥𝐴𝐵)
4 df-mpt 4045 . . . 4 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
53, 4eqtri 2186 . . 3 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
65fnopabg 5311 . 2 (∀𝑥𝐴 ∃!𝑦 𝑦 = 𝐵𝐹 Fn 𝐴)
72, 6bitri 183 1 (∀𝑥𝐴 𝐵 ∈ V ↔ 𝐹 Fn 𝐴)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1343  ∃!weu 2014  wcel 2136  wral 2444  Vcvv 2726  {copab 4042  cmpt 4043   Fn wfn 5183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-fun 5190  df-fn 5191
This theorem is referenced by:  fnmpt  5314  fnmpti  5316  mpteqb  5576  cc3  7209
  Copyright terms: Public domain W3C validator