| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mptfng | GIF version | ||
| Description: The maps-to notation defines a function with domain. (Contributed by Scott Fenton, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| mptfng.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| mptfng | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V ↔ 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eueq 2974 | . . 3 ⊢ (𝐵 ∈ V ↔ ∃!𝑦 𝑦 = 𝐵) | |
| 2 | 1 | ralbii 2536 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V ↔ ∀𝑥 ∈ 𝐴 ∃!𝑦 𝑦 = 𝐵) |
| 3 | mptfng.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | df-mpt 4147 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 5 | 3, 4 | eqtri 2250 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 6 | 5 | fnopabg 5447 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃!𝑦 𝑦 = 𝐵 ↔ 𝐹 Fn 𝐴) |
| 7 | 2, 6 | bitri 184 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V ↔ 𝐹 Fn 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1395 ∃!weu 2077 ∈ wcel 2200 ∀wral 2508 Vcvv 2799 {copab 4144 ↦ cmpt 4145 Fn wfn 5313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-fun 5320 df-fn 5321 |
| This theorem is referenced by: fnmpt 5450 fnmpti 5452 mpteqb 5727 cc3 7462 |
| Copyright terms: Public domain | W3C validator |