ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptfng GIF version

Theorem mptfng 5323
Description: The maps-to notation defines a function with domain. (Contributed by Scott Fenton, 21-Mar-2011.)
Hypothesis
Ref Expression
mptfng.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
mptfng (∀𝑥𝐴 𝐵 ∈ V ↔ 𝐹 Fn 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem mptfng
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eueq 2901 . . 3 (𝐵 ∈ V ↔ ∃!𝑦 𝑦 = 𝐵)
21ralbii 2476 . 2 (∀𝑥𝐴 𝐵 ∈ V ↔ ∀𝑥𝐴 ∃!𝑦 𝑦 = 𝐵)
3 mptfng.1 . . . 4 𝐹 = (𝑥𝐴𝐵)
4 df-mpt 4052 . . . 4 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
53, 4eqtri 2191 . . 3 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
65fnopabg 5321 . 2 (∀𝑥𝐴 ∃!𝑦 𝑦 = 𝐵𝐹 Fn 𝐴)
72, 6bitri 183 1 (∀𝑥𝐴 𝐵 ∈ V ↔ 𝐹 Fn 𝐴)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1348  ∃!weu 2019  wcel 2141  wral 2448  Vcvv 2730  {copab 4049  cmpt 4050   Fn wfn 5193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-fun 5200  df-fn 5201
This theorem is referenced by:  fnmpt  5324  fnmpti  5326  mpteqb  5586  cc3  7230
  Copyright terms: Public domain W3C validator