ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptrabex Unicode version

Theorem mptrabex 5825
Description: If the domain of a function given by maps-to notation is a class abstraction based on a set, the function is a set. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.)
Hypothesis
Ref Expression
mptrabex.1  |-  A  e. 
_V
Assertion
Ref Expression
mptrabex  |-  ( x  e.  { y  e.  A  |  ph }  |->  B )  e.  _V
Distinct variable groups:    x, y, A    ph, x
Allowed substitution hints:    ph( y)    B( x, y)

Proof of Theorem mptrabex
StepHypRef Expression
1 mptrabex.1 . . 3  |-  A  e. 
_V
21rabex 4196 . 2  |-  { y  e.  A  |  ph }  e.  _V
32mptex 5823 1  |-  ( x  e.  { y  e.  A  |  ph }  |->  B )  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2177   {crab 2489   _Vcvv 2773    |-> cmpt 4113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288
This theorem is referenced by:  odzval  12639
  Copyright terms: Public domain W3C validator