ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptrabex Unicode version

Theorem mptrabex 5802
Description: If the domain of a function given by maps-to notation is a class abstraction based on a set, the function is a set. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.)
Hypothesis
Ref Expression
mptrabex.1  |-  A  e. 
_V
Assertion
Ref Expression
mptrabex  |-  ( x  e.  { y  e.  A  |  ph }  |->  B )  e.  _V
Distinct variable groups:    x, y, A    ph, x
Allowed substitution hints:    ph( y)    B( x, y)

Proof of Theorem mptrabex
StepHypRef Expression
1 mptrabex.1 . . 3  |-  A  e. 
_V
21rabex 4187 . 2  |-  { y  e.  A  |  ph }  e.  _V
32mptex 5800 1  |-  ( x  e.  { y  e.  A  |  ph }  |->  B )  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2175   {crab 2487   _Vcvv 2771    |-> cmpt 4104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276
This theorem is referenced by:  odzval  12483
  Copyright terms: Public domain W3C validator