ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fex Unicode version

Theorem fex 5794
Description: If the domain of a mapping is a set, the function is a set. (Contributed by NM, 3-Oct-1999.)
Assertion
Ref Expression
fex  |-  ( ( F : A --> B  /\  A  e.  C )  ->  F  e.  _V )

Proof of Theorem fex
StepHypRef Expression
1 ffn 5410 . 2  |-  ( F : A --> B  ->  F  Fn  A )
2 fnex 5787 . 2  |-  ( ( F  Fn  A  /\  A  e.  C )  ->  F  e.  _V )
31, 2sylan 283 1  |-  ( ( F : A --> B  /\  A  e.  C )  ->  F  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2167   _Vcvv 2763    Fn wfn 5254   -->wf 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267
This theorem is referenced by:  fexd  5795  tfrcllembex  6425  tfrcl  6431  f1domg  6826  djudom  7168  difinfsn  7175  iseqf1olemjpcl  10617  iseqf1olemfvp  10619  seq3f1olemqsum  10622  seq3f1olemstep  10623  seq3f1olemp  10624  fihashf1rn  10897  climcvg1nlem  11531  fsum3  11569  fprodseq  11765  cnfldstr  14190  cnfldcj  14197  climcncf  14904
  Copyright terms: Public domain W3C validator