| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mptex | Unicode version | ||
| Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by NM, 22-Apr-2005.) (Revised by Mario Carneiro, 20-Dec-2013.) |
| Ref | Expression |
|---|---|
| mptex.1 |
|
| Ref | Expression |
|---|---|
| mptex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptex.1 |
. 2
| |
| 2 | mptexg 5832 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 |
| This theorem is referenced by: mptrabex 5835 eufnfv 5838 abrexex 6225 ofmres 6244 difinfsn 7228 ctmlemr 7236 ctssdclemn0 7238 ctssdc 7241 enumct 7243 frec2uzrand 10587 frec2uzf1od 10588 frecfzennn 10608 uzennn 10618 0tonninf 10622 1tonninf 10623 hashinfom 10960 absval 11427 climle 11760 climcvg1nlem 11775 iserabs 11901 isumshft 11916 divcnv 11923 trireciplem 11926 expcnvap0 11928 expcnvre 11929 expcnv 11930 explecnv 11931 geolim 11937 geo2lim 11942 mertenslem2 11962 eftlub 12116 nninfctlemfo 12476 nninfct 12477 1arithlem1 12801 1arith 12805 ctiunct 12926 restfn 13190 cndsex 14430 metuex 14432 zrhval2 14496 ivthreinc 15232 elply 15321 peano4nninf 16145 peano3nninf 16146 nninfsellemeq 16153 nninfsellemeqinf 16155 dceqnconst 16201 dcapnconst 16202 |
| Copyright terms: Public domain | W3C validator |