ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptex Unicode version

Theorem mptex 5763
Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by NM, 22-Apr-2005.) (Revised by Mario Carneiro, 20-Dec-2013.)
Hypothesis
Ref Expression
mptex.1  |-  A  e. 
_V
Assertion
Ref Expression
mptex  |-  ( x  e.  A  |->  B )  e.  _V
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem mptex
StepHypRef Expression
1 mptex.1 . 2  |-  A  e. 
_V
2 mptexg 5762 . 2  |-  ( A  e.  _V  ->  (
x  e.  A  |->  B )  e.  _V )
31, 2ax-mp 5 1  |-  ( x  e.  A  |->  B )  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2160   _Vcvv 2752    |-> cmpt 4079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243
This theorem is referenced by:  mptrabex  5765  eufnfv  5768  abrexex  6142  ofmres  6161  difinfsn  7129  ctmlemr  7137  ctssdclemn0  7139  ctssdc  7142  enumct  7144  frec2uzrand  10436  frec2uzf1od  10437  frecfzennn  10457  uzennn  10467  0tonninf  10470  1tonninf  10471  hashinfom  10790  absval  11042  climle  11374  climcvg1nlem  11389  iserabs  11515  isumshft  11530  divcnv  11537  trireciplem  11540  expcnvap0  11542  expcnvre  11543  expcnv  11544  explecnv  11545  geolim  11551  geo2lim  11556  mertenslem2  11576  eftlub  11730  1arithlem1  12395  1arith  12399  ctiunct  12491  restfn  12748  zrhval2  13916  peano4nninf  15217  peano3nninf  15218  nninfsellemeq  15225  nninfsellemeqinf  15227  dceqnconst  15270  dcapnconst  15271
  Copyright terms: Public domain W3C validator