ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptex Unicode version

Theorem mptex 5722
Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by NM, 22-Apr-2005.) (Revised by Mario Carneiro, 20-Dec-2013.)
Hypothesis
Ref Expression
mptex.1  |-  A  e. 
_V
Assertion
Ref Expression
mptex  |-  ( x  e.  A  |->  B )  e.  _V
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem mptex
StepHypRef Expression
1 mptex.1 . 2  |-  A  e. 
_V
2 mptexg 5721 . 2  |-  ( A  e.  _V  ->  (
x  e.  A  |->  B )  e.  _V )
31, 2ax-mp 5 1  |-  ( x  e.  A  |->  B )  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2141   _Vcvv 2730    |-> cmpt 4050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206
This theorem is referenced by:  mptrabex  5724  eufnfv  5726  abrexex  6096  ofmres  6115  difinfsn  7077  ctmlemr  7085  ctssdclemn0  7087  ctssdc  7090  enumct  7092  frec2uzrand  10361  frec2uzf1od  10362  frecfzennn  10382  uzennn  10392  0tonninf  10395  1tonninf  10396  hashinfom  10712  absval  10965  climle  11297  climcvg1nlem  11312  iserabs  11438  isumshft  11453  divcnv  11460  trireciplem  11463  expcnvap0  11465  expcnvre  11466  expcnv  11467  explecnv  11468  geolim  11474  geo2lim  11479  mertenslem2  11499  eftlub  11653  1arithlem1  12315  1arith  12319  ctiunct  12395  restfn  12583  peano4nninf  14039  peano3nninf  14040  nninfsellemeq  14047  nninfsellemeqinf  14049  dceqnconst  14091  dcapnconst  14092
  Copyright terms: Public domain W3C validator