Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mptex | Unicode version |
Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by NM, 22-Apr-2005.) (Revised by Mario Carneiro, 20-Dec-2013.) |
Ref | Expression |
---|---|
mptex.1 |
Ref | Expression |
---|---|
mptex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptex.1 | . 2 | |
2 | mptexg 5710 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2136 cvv 2726 cmpt 4043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 |
This theorem is referenced by: mptrabex 5713 eufnfv 5715 abrexex 6085 ofmres 6104 difinfsn 7065 ctmlemr 7073 ctssdclemn0 7075 ctssdc 7078 enumct 7080 frec2uzrand 10340 frec2uzf1od 10341 frecfzennn 10361 uzennn 10371 0tonninf 10374 1tonninf 10375 hashinfom 10691 absval 10943 climle 11275 climcvg1nlem 11290 iserabs 11416 isumshft 11431 divcnv 11438 trireciplem 11441 expcnvap0 11443 expcnvre 11444 expcnv 11445 explecnv 11446 geolim 11452 geo2lim 11457 mertenslem2 11477 eftlub 11631 1arithlem1 12293 1arith 12297 ctiunct 12373 restfn 12560 peano4nninf 13896 peano3nninf 13897 nninfsellemeq 13904 nninfsellemeqinf 13906 dceqnconst 13948 dcapnconst 13949 |
Copyright terms: Public domain | W3C validator |