| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mptex | Unicode version | ||
| Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by NM, 22-Apr-2005.) (Revised by Mario Carneiro, 20-Dec-2013.) |
| Ref | Expression |
|---|---|
| mptex.1 |
|
| Ref | Expression |
|---|---|
| mptex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptex.1 |
. 2
| |
| 2 | mptexg 5809 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 |
| This theorem is referenced by: mptrabex 5812 eufnfv 5815 abrexex 6202 ofmres 6221 difinfsn 7202 ctmlemr 7210 ctssdclemn0 7212 ctssdc 7215 enumct 7217 frec2uzrand 10550 frec2uzf1od 10551 frecfzennn 10571 uzennn 10581 0tonninf 10585 1tonninf 10586 hashinfom 10923 absval 11312 climle 11645 climcvg1nlem 11660 iserabs 11786 isumshft 11801 divcnv 11808 trireciplem 11811 expcnvap0 11813 expcnvre 11814 expcnv 11815 explecnv 11816 geolim 11822 geo2lim 11827 mertenslem2 11847 eftlub 12001 nninfctlemfo 12361 nninfct 12362 1arithlem1 12686 1arith 12690 ctiunct 12811 restfn 13075 cndsex 14315 metuex 14317 zrhval2 14381 ivthreinc 15117 elply 15206 peano4nninf 15943 peano3nninf 15944 nninfsellemeq 15951 nninfsellemeqinf 15953 dceqnconst 15999 dcapnconst 16000 |
| Copyright terms: Public domain | W3C validator |