| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mptex | Unicode version | ||
| Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by NM, 22-Apr-2005.) (Revised by Mario Carneiro, 20-Dec-2013.) |
| Ref | Expression |
|---|---|
| mptex.1 |
|
| Ref | Expression |
|---|---|
| mptex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptex.1 |
. 2
| |
| 2 | mptexg 5808 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 |
| This theorem is referenced by: mptrabex 5811 eufnfv 5814 abrexex 6201 ofmres 6220 difinfsn 7201 ctmlemr 7209 ctssdclemn0 7211 ctssdc 7214 enumct 7216 frec2uzrand 10548 frec2uzf1od 10549 frecfzennn 10569 uzennn 10579 0tonninf 10583 1tonninf 10584 hashinfom 10921 absval 11283 climle 11616 climcvg1nlem 11631 iserabs 11757 isumshft 11772 divcnv 11779 trireciplem 11782 expcnvap0 11784 expcnvre 11785 expcnv 11786 explecnv 11787 geolim 11793 geo2lim 11798 mertenslem2 11818 eftlub 11972 nninfctlemfo 12332 nninfct 12333 1arithlem1 12657 1arith 12661 ctiunct 12782 restfn 13046 cndsex 14286 metuex 14288 zrhval2 14352 ivthreinc 15088 elply 15177 peano4nninf 15905 peano3nninf 15906 nninfsellemeq 15913 nninfsellemeqinf 15915 dceqnconst 15961 dcapnconst 15962 |
| Copyright terms: Public domain | W3C validator |