![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mptex | Unicode version |
Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by NM, 22-Apr-2005.) (Revised by Mario Carneiro, 20-Dec-2013.) |
Ref | Expression |
---|---|
mptex.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mptex |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptex.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | mptexg 5783 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 |
This theorem is referenced by: mptrabex 5786 eufnfv 5789 abrexex 6169 ofmres 6188 difinfsn 7159 ctmlemr 7167 ctssdclemn0 7169 ctssdc 7172 enumct 7174 frec2uzrand 10476 frec2uzf1od 10477 frecfzennn 10497 uzennn 10507 0tonninf 10511 1tonninf 10512 hashinfom 10849 absval 11145 climle 11477 climcvg1nlem 11492 iserabs 11618 isumshft 11633 divcnv 11640 trireciplem 11643 expcnvap0 11645 expcnvre 11646 expcnv 11647 explecnv 11648 geolim 11654 geo2lim 11659 mertenslem2 11679 eftlub 11833 nninfctlemfo 12177 nninfct 12178 1arithlem1 12501 1arith 12505 ctiunct 12597 restfn 12854 zrhval2 14107 ivthreinc 14799 elply 14880 peano4nninf 15496 peano3nninf 15497 nninfsellemeq 15504 nninfsellemeqinf 15506 dceqnconst 15550 dcapnconst 15551 |
Copyright terms: Public domain | W3C validator |