| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mullidd | Unicode version | ||
| Description: Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 |
|
| Ref | Expression |
|---|---|
| mullidd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 |
. 2
| |
| 2 | mullid 8090 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-resscn 8037 ax-1cn 8038 ax-icn 8040 ax-addcl 8041 ax-mulcl 8043 ax-mulcom 8046 ax-mulass 8048 ax-distr 8049 ax-1rid 8052 ax-cnre 8056 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-iota 5241 df-fv 5288 df-ov 5960 |
| This theorem is referenced by: subhalfhalf 9292 bitsfzolem 12340 bitsfzo 12341 4sqlem18 12806 plypow 15291 wilthlem1 15527 mersenne 15544 perfectlem2 15547 gausslemma2dlem1a 15610 gausslemma2dlem4 15616 gausslemma2dlem7 15620 gausslemma2d 15621 lgseisenlem1 15622 lgseisenlem2 15623 lgseisenlem4 15625 lgsquad2lem1 15633 |
| Copyright terms: Public domain | W3C validator |