ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mullidd Unicode version

Theorem mullidd 8042
Description: Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
addcld.1  |-  ( ph  ->  A  e.  CC )
Assertion
Ref Expression
mullidd  |-  ( ph  ->  ( 1  x.  A
)  =  A )

Proof of Theorem mullidd
StepHypRef Expression
1 addcld.1 . 2  |-  ( ph  ->  A  e.  CC )
2 mullid 8022 . 2  |-  ( A  e.  CC  ->  (
1  x.  A )  =  A )
31, 2syl 14 1  |-  ( ph  ->  ( 1  x.  A
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167  (class class class)co 5922   CCcc 7875   1c1 7878    x. cmul 7882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-resscn 7969  ax-1cn 7970  ax-icn 7972  ax-addcl 7973  ax-mulcl 7975  ax-mulcom 7978  ax-mulass 7980  ax-distr 7981  ax-1rid 7984  ax-cnre 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-iota 5219  df-fv 5266  df-ov 5925
This theorem is referenced by:  subhalfhalf  9223  4sqlem18  12553  plypow  14956  wilthlem1  15188  gausslemma2dlem1a  15266  gausslemma2dlem4  15272  gausslemma2dlem7  15276  gausslemma2d  15277  lgseisenlem1  15278  lgseisenlem2  15279  lgseisenlem4  15281  lgsquad2lem1  15289
  Copyright terms: Public domain W3C validator