ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mullidd Unicode version

Theorem mullidd 8160
Description: Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
addcld.1  |-  ( ph  ->  A  e.  CC )
Assertion
Ref Expression
mullidd  |-  ( ph  ->  ( 1  x.  A
)  =  A )

Proof of Theorem mullidd
StepHypRef Expression
1 addcld.1 . 2  |-  ( ph  ->  A  e.  CC )
2 mullid 8140 . 2  |-  ( A  e.  CC  ->  (
1  x.  A )  =  A )
31, 2syl 14 1  |-  ( ph  ->  ( 1  x.  A
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200  (class class class)co 6000   CCcc 7993   1c1 7996    x. cmul 8000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-resscn 8087  ax-1cn 8088  ax-icn 8090  ax-addcl 8091  ax-mulcl 8093  ax-mulcom 8096  ax-mulass 8098  ax-distr 8099  ax-1rid 8102  ax-cnre 8106
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-iota 5277  df-fv 5325  df-ov 6003
This theorem is referenced by:  subhalfhalf  9342  bitsfzolem  12460  bitsfzo  12461  4sqlem18  12926  plypow  15412  wilthlem1  15648  mersenne  15665  perfectlem2  15668  gausslemma2dlem1a  15731  gausslemma2dlem4  15737  gausslemma2dlem7  15741  gausslemma2d  15742  lgseisenlem1  15743  lgseisenlem2  15744  lgseisenlem4  15746  lgsquad2lem1  15754
  Copyright terms: Public domain W3C validator