ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mullidd Unicode version

Theorem mullidd 8110
Description: Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
addcld.1  |-  ( ph  ->  A  e.  CC )
Assertion
Ref Expression
mullidd  |-  ( ph  ->  ( 1  x.  A
)  =  A )

Proof of Theorem mullidd
StepHypRef Expression
1 addcld.1 . 2  |-  ( ph  ->  A  e.  CC )
2 mullid 8090 . 2  |-  ( A  e.  CC  ->  (
1  x.  A )  =  A )
31, 2syl 14 1  |-  ( ph  ->  ( 1  x.  A
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177  (class class class)co 5957   CCcc 7943   1c1 7946    x. cmul 7950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-resscn 8037  ax-1cn 8038  ax-icn 8040  ax-addcl 8041  ax-mulcl 8043  ax-mulcom 8046  ax-mulass 8048  ax-distr 8049  ax-1rid 8052  ax-cnre 8056
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-iota 5241  df-fv 5288  df-ov 5960
This theorem is referenced by:  subhalfhalf  9292  bitsfzolem  12340  bitsfzo  12341  4sqlem18  12806  plypow  15291  wilthlem1  15527  mersenne  15544  perfectlem2  15547  gausslemma2dlem1a  15610  gausslemma2dlem4  15616  gausslemma2dlem7  15620  gausslemma2d  15621  lgseisenlem1  15622  lgseisenlem2  15623  lgseisenlem4  15625  lgsquad2lem1  15633
  Copyright terms: Public domain W3C validator