| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mullidd | Unicode version | ||
| Description: Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 |
|
| Ref | Expression |
|---|---|
| mullidd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 |
. 2
| |
| 2 | mullid 8052 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-resscn 7999 ax-1cn 8000 ax-icn 8002 ax-addcl 8003 ax-mulcl 8005 ax-mulcom 8008 ax-mulass 8010 ax-distr 8011 ax-1rid 8014 ax-cnre 8018 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-iota 5229 df-fv 5276 df-ov 5937 |
| This theorem is referenced by: subhalfhalf 9254 bitsfzolem 12184 bitsfzo 12185 4sqlem18 12650 plypow 15134 wilthlem1 15370 mersenne 15387 perfectlem2 15390 gausslemma2dlem1a 15453 gausslemma2dlem4 15459 gausslemma2dlem7 15463 gausslemma2d 15464 lgseisenlem1 15465 lgseisenlem2 15466 lgseisenlem4 15468 lgsquad2lem1 15476 |
| Copyright terms: Public domain | W3C validator |