| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mullidd | Unicode version | ||
| Description: Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 |
|
| Ref | Expression |
|---|---|
| mullidd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 |
. 2
| |
| 2 | mullid 8027 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7974 ax-1cn 7975 ax-icn 7977 ax-addcl 7978 ax-mulcl 7980 ax-mulcom 7983 ax-mulass 7985 ax-distr 7986 ax-1rid 7989 ax-cnre 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5926 |
| This theorem is referenced by: subhalfhalf 9229 bitsfzolem 12122 bitsfzo 12123 4sqlem18 12588 plypow 15006 wilthlem1 15242 mersenne 15259 perfectlem2 15262 gausslemma2dlem1a 15325 gausslemma2dlem4 15331 gausslemma2dlem7 15335 gausslemma2d 15336 lgseisenlem1 15337 lgseisenlem2 15338 lgseisenlem4 15340 lgsquad2lem1 15348 |
| Copyright terms: Public domain | W3C validator |