ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mullidd GIF version

Theorem mullidd 8061
Description: Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
addcld.1 (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
mullidd (𝜑 → (1 · 𝐴) = 𝐴)

Proof of Theorem mullidd
StepHypRef Expression
1 addcld.1 . 2 (𝜑𝐴 ∈ ℂ)
2 mullid 8041 . 2 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
31, 2syl 14 1 (𝜑 → (1 · 𝐴) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  (class class class)co 5925  cc 7894  1c1 7897   · cmul 7901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-resscn 7988  ax-1cn 7989  ax-icn 7991  ax-addcl 7992  ax-mulcl 7994  ax-mulcom 7997  ax-mulass 7999  ax-distr 8000  ax-1rid 8003  ax-cnre 8007
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-iota 5220  df-fv 5267  df-ov 5928
This theorem is referenced by:  subhalfhalf  9243  bitsfzolem  12136  bitsfzo  12137  4sqlem18  12602  plypow  15064  wilthlem1  15300  mersenne  15317  perfectlem2  15320  gausslemma2dlem1a  15383  gausslemma2dlem4  15389  gausslemma2dlem7  15393  gausslemma2d  15394  lgseisenlem1  15395  lgseisenlem2  15396  lgseisenlem4  15398  lgsquad2lem1  15406
  Copyright terms: Public domain W3C validator