| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulid2d | Unicode version | ||
| Description: Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 |
|
| Ref | Expression |
|---|---|
| mulid2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 |
. 2
| |
| 2 | mullid 8041 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7988 ax-1cn 7989 ax-icn 7991 ax-addcl 7992 ax-mulcl 7994 ax-mulcom 7997 ax-mulass 7999 ax-distr 8000 ax-1rid 8003 ax-cnre 8007 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: adddirp1d 8070 mulsubfacd 8462 mulcanapd 8705 receuap 8713 divdivdivap 8757 divcanap5 8758 subrecap 8883 ltrec 8927 recp1lt1 8943 nndivtr 9049 xp1d2m1eqxm1d2 9261 gtndiv 9438 lincmb01cmp 10095 iccf1o 10096 modqfrac 10446 qnegmod 10478 addmodid 10481 m1expcl2 10670 expgt1 10686 ltexp2a 10700 leexp2a 10701 binom3 10766 faclbnd 10850 facavg 10855 bcval5 10872 cvg1nlemcau 11166 resqrexlemover 11192 resqrexlemcalc2 11197 absimle 11266 maxabslemlub 11389 reccn2ap 11495 binom1p 11667 binom1dif 11669 fprodsplitdc 11778 fprodcl2lem 11787 efcllemp 11840 ef01bndlem 11938 efieq1re 11954 eirraplem 11959 iddvds 11986 gcdaddm 12176 rpmulgcd 12218 prmind2 12313 isprm5lem 12334 phiprm 12416 eulerthlemth 12425 fermltl 12427 hashgcdlem 12431 odzdvds 12439 powm2modprm 12446 modprm0 12448 pythagtriplem4 12462 mulgnnass 13363 dvexp 15031 dvef 15047 reeff1oleme 15092 sin0pilem1 15101 sinhalfpip 15140 sinhalfpim 15141 coshalfpip 15142 coshalfpim 15143 tangtx 15158 logdivlti 15201 binom4 15299 lgsval2lem 15335 lgsval4a 15347 lgsneg1 15350 lgsdilem 15352 lgsdir2lem4 15356 lgsdir2 15358 lgsdir 15360 lgsmulsqcoprm 15371 lgsdirnn0 15372 lgsdinn0 15373 2sqlem8 15448 qdencn 15758 |
| Copyright terms: Public domain | W3C validator |