| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulid2d | Unicode version | ||
| Description: Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 |
|
| Ref | Expression |
|---|---|
| mulid2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 |
. 2
| |
| 2 | mullid 8043 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7990 ax-1cn 7991 ax-icn 7993 ax-addcl 7994 ax-mulcl 7996 ax-mulcom 7999 ax-mulass 8001 ax-distr 8002 ax-1rid 8005 ax-cnre 8009 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: adddirp1d 8072 mulsubfacd 8464 mulcanapd 8707 receuap 8715 divdivdivap 8759 divcanap5 8760 subrecap 8885 ltrec 8929 recp1lt1 8945 nndivtr 9051 xp1d2m1eqxm1d2 9263 gtndiv 9440 lincmb01cmp 10097 iccf1o 10098 modqfrac 10448 qnegmod 10480 addmodid 10483 m1expcl2 10672 expgt1 10688 ltexp2a 10702 leexp2a 10703 binom3 10768 faclbnd 10852 facavg 10857 bcval5 10874 cvg1nlemcau 11168 resqrexlemover 11194 resqrexlemcalc2 11199 absimle 11268 maxabslemlub 11391 reccn2ap 11497 binom1p 11669 binom1dif 11671 fprodsplitdc 11780 fprodcl2lem 11789 efcllemp 11842 ef01bndlem 11940 efieq1re 11956 eirraplem 11961 iddvds 11988 gcdaddm 12178 rpmulgcd 12220 prmind2 12315 isprm5lem 12336 phiprm 12418 eulerthlemth 12427 fermltl 12429 hashgcdlem 12433 odzdvds 12441 powm2modprm 12448 modprm0 12450 pythagtriplem4 12464 mulgnnass 13365 dvexp 15033 dvef 15049 reeff1oleme 15094 sin0pilem1 15103 sinhalfpip 15142 sinhalfpim 15143 coshalfpip 15144 coshalfpim 15145 tangtx 15160 logdivlti 15203 binom4 15301 lgsval2lem 15337 lgsval4a 15349 lgsneg1 15352 lgsdilem 15354 lgsdir2lem4 15358 lgsdir2 15360 lgsdir 15362 lgsmulsqcoprm 15373 lgsdirnn0 15374 lgsdinn0 15375 2sqlem8 15450 qdencn 15762 |
| Copyright terms: Public domain | W3C validator |