Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulid2d | Unicode version |
Description: Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addcld.1 |
Ref | Expression |
---|---|
mulid2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcld.1 | . 2 | |
2 | mulid2 7918 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 wcel 2141 (class class class)co 5853 cc 7772 c1 7775 cmul 7779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-resscn 7866 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-mulcl 7872 ax-mulcom 7875 ax-mulass 7877 ax-distr 7878 ax-1rid 7881 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 |
This theorem is referenced by: adddirp1d 7946 mulsubfacd 8337 mulcanapd 8579 receuap 8587 divdivdivap 8630 divcanap5 8631 subrecap 8756 ltrec 8799 recp1lt1 8815 nndivtr 8920 xp1d2m1eqxm1d2 9130 gtndiv 9307 lincmb01cmp 9960 iccf1o 9961 modqfrac 10293 qnegmod 10325 addmodid 10328 m1expcl2 10498 expgt1 10514 ltexp2a 10528 leexp2a 10529 binom3 10593 faclbnd 10675 facavg 10680 bcval5 10697 cvg1nlemcau 10948 resqrexlemover 10974 resqrexlemcalc2 10979 absimle 11048 maxabslemlub 11171 reccn2ap 11276 binom1p 11448 binom1dif 11450 fprodsplitdc 11559 fprodcl2lem 11568 efcllemp 11621 ef01bndlem 11719 efieq1re 11734 eirraplem 11739 iddvds 11766 gcdaddm 11939 rpmulgcd 11981 prmind2 12074 isprm5lem 12095 phiprm 12177 eulerthlemth 12186 fermltl 12188 hashgcdlem 12192 odzdvds 12199 powm2modprm 12206 modprm0 12208 pythagtriplem4 12222 dvexp 13469 dvef 13482 reeff1oleme 13487 sin0pilem1 13496 sinhalfpip 13535 sinhalfpim 13536 coshalfpip 13537 coshalfpim 13538 tangtx 13553 logdivlti 13596 binom4 13691 lgsval2lem 13705 lgsval4a 13717 lgsneg1 13720 lgsdilem 13722 lgsdir2lem4 13726 lgsdir2 13728 lgsdir 13730 lgsmulsqcoprm 13741 lgsdirnn0 13742 lgsdinn0 13743 2sqlem8 13753 qdencn 14059 |
Copyright terms: Public domain | W3C validator |