| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulid2d | Unicode version | ||
| Description: Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 |
|
| Ref | Expression |
|---|---|
| mulid2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 |
. 2
| |
| 2 | mullid 8070 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-resscn 8017 ax-1cn 8018 ax-icn 8020 ax-addcl 8021 ax-mulcl 8023 ax-mulcom 8026 ax-mulass 8028 ax-distr 8029 ax-1rid 8032 ax-cnre 8036 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 |
| This theorem is referenced by: adddirp1d 8099 mulsubfacd 8491 mulcanapd 8734 receuap 8742 divdivdivap 8786 divcanap5 8787 subrecap 8912 ltrec 8956 recp1lt1 8972 nndivtr 9078 xp1d2m1eqxm1d2 9290 gtndiv 9468 lincmb01cmp 10125 iccf1o 10126 modqfrac 10482 qnegmod 10514 addmodid 10517 m1expcl2 10706 expgt1 10722 ltexp2a 10736 leexp2a 10737 binom3 10802 faclbnd 10886 facavg 10891 bcval5 10908 cvg1nlemcau 11295 resqrexlemover 11321 resqrexlemcalc2 11326 absimle 11395 maxabslemlub 11518 reccn2ap 11624 binom1p 11796 binom1dif 11798 fprodsplitdc 11907 fprodcl2lem 11916 efcllemp 11969 ef01bndlem 12067 efieq1re 12083 eirraplem 12088 iddvds 12115 gcdaddm 12305 rpmulgcd 12347 prmind2 12442 isprm5lem 12463 phiprm 12545 eulerthlemth 12554 fermltl 12556 hashgcdlem 12560 odzdvds 12568 powm2modprm 12575 modprm0 12577 pythagtriplem4 12591 mulgnnass 13493 dvexp 15183 dvef 15199 reeff1oleme 15244 sin0pilem1 15253 sinhalfpip 15292 sinhalfpim 15293 coshalfpip 15294 coshalfpim 15295 tangtx 15310 logdivlti 15353 binom4 15451 lgsval2lem 15487 lgsval4a 15499 lgsneg1 15502 lgsdilem 15504 lgsdir2lem4 15508 lgsdir2 15510 lgsdir 15512 lgsmulsqcoprm 15523 lgsdirnn0 15524 lgsdinn0 15525 2sqlem8 15600 qdencn 15966 |
| Copyright terms: Public domain | W3C validator |