Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulid2d | Unicode version |
Description: Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addcld.1 |
Ref | Expression |
---|---|
mulid2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcld.1 | . 2 | |
2 | mulid2 7930 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1353 wcel 2146 (class class class)co 5865 cc 7784 c1 7787 cmul 7791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-resscn 7878 ax-1cn 7879 ax-icn 7881 ax-addcl 7882 ax-mulcl 7884 ax-mulcom 7887 ax-mulass 7889 ax-distr 7890 ax-1rid 7893 ax-cnre 7897 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-iota 5170 df-fv 5216 df-ov 5868 |
This theorem is referenced by: adddirp1d 7958 mulsubfacd 8349 mulcanapd 8591 receuap 8599 divdivdivap 8643 divcanap5 8644 subrecap 8769 ltrec 8813 recp1lt1 8829 nndivtr 8934 xp1d2m1eqxm1d2 9144 gtndiv 9321 lincmb01cmp 9974 iccf1o 9975 modqfrac 10307 qnegmod 10339 addmodid 10342 m1expcl2 10512 expgt1 10528 ltexp2a 10542 leexp2a 10543 binom3 10607 faclbnd 10689 facavg 10694 bcval5 10711 cvg1nlemcau 10961 resqrexlemover 10987 resqrexlemcalc2 10992 absimle 11061 maxabslemlub 11184 reccn2ap 11289 binom1p 11461 binom1dif 11463 fprodsplitdc 11572 fprodcl2lem 11581 efcllemp 11634 ef01bndlem 11732 efieq1re 11747 eirraplem 11752 iddvds 11779 gcdaddm 11952 rpmulgcd 11994 prmind2 12087 isprm5lem 12108 phiprm 12190 eulerthlemth 12199 fermltl 12201 hashgcdlem 12205 odzdvds 12212 powm2modprm 12219 modprm0 12221 pythagtriplem4 12235 mulgnnass 12887 dvexp 13755 dvef 13768 reeff1oleme 13773 sin0pilem1 13782 sinhalfpip 13821 sinhalfpim 13822 coshalfpip 13823 coshalfpim 13824 tangtx 13839 logdivlti 13882 binom4 13977 lgsval2lem 13991 lgsval4a 14003 lgsneg1 14006 lgsdilem 14008 lgsdir2lem4 14012 lgsdir2 14014 lgsdir 14016 lgsmulsqcoprm 14027 lgsdirnn0 14028 lgsdinn0 14029 2sqlem8 14039 qdencn 14345 |
Copyright terms: Public domain | W3C validator |