| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulid2d | Unicode version | ||
| Description: Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 |
|
| Ref | Expression |
|---|---|
| mulid2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 |
. 2
| |
| 2 | mullid 8024 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7971 ax-1cn 7972 ax-icn 7974 ax-addcl 7975 ax-mulcl 7977 ax-mulcom 7980 ax-mulass 7982 ax-distr 7983 ax-1rid 7986 ax-cnre 7990 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 |
| This theorem is referenced by: adddirp1d 8053 mulsubfacd 8445 mulcanapd 8688 receuap 8696 divdivdivap 8740 divcanap5 8741 subrecap 8866 ltrec 8910 recp1lt1 8926 nndivtr 9032 xp1d2m1eqxm1d2 9244 gtndiv 9421 lincmb01cmp 10078 iccf1o 10079 modqfrac 10429 qnegmod 10461 addmodid 10464 m1expcl2 10653 expgt1 10669 ltexp2a 10683 leexp2a 10684 binom3 10749 faclbnd 10833 facavg 10838 bcval5 10855 cvg1nlemcau 11149 resqrexlemover 11175 resqrexlemcalc2 11180 absimle 11249 maxabslemlub 11372 reccn2ap 11478 binom1p 11650 binom1dif 11652 fprodsplitdc 11761 fprodcl2lem 11770 efcllemp 11823 ef01bndlem 11921 efieq1re 11937 eirraplem 11942 iddvds 11969 gcdaddm 12151 rpmulgcd 12193 prmind2 12288 isprm5lem 12309 phiprm 12391 eulerthlemth 12400 fermltl 12402 hashgcdlem 12406 odzdvds 12414 powm2modprm 12421 modprm0 12423 pythagtriplem4 12437 mulgnnass 13287 dvexp 14947 dvef 14963 reeff1oleme 15008 sin0pilem1 15017 sinhalfpip 15056 sinhalfpim 15057 coshalfpip 15058 coshalfpim 15059 tangtx 15074 logdivlti 15117 binom4 15215 lgsval2lem 15251 lgsval4a 15263 lgsneg1 15266 lgsdilem 15268 lgsdir2lem4 15272 lgsdir2 15274 lgsdir 15276 lgsmulsqcoprm 15287 lgsdirnn0 15288 lgsdinn0 15289 2sqlem8 15364 qdencn 15671 |
| Copyright terms: Public domain | W3C validator |