ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mullid Unicode version

Theorem mullid 8100
Description: Identity law for multiplication. Note: see mulrid 8099 for commuted version. (Contributed by NM, 8-Oct-1999.)
Assertion
Ref Expression
mullid  |-  ( A  e.  CC  ->  (
1  x.  A )  =  A )

Proof of Theorem mullid
StepHypRef Expression
1 ax-1cn 8048 . . 3  |-  1  e.  CC
2 mulcom 8084 . . 3  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  x.  A
)  =  ( A  x.  1 ) )
31, 2mpan 424 . 2  |-  ( A  e.  CC  ->  (
1  x.  A )  =  ( A  x.  1 ) )
4 mulrid 8099 . 2  |-  ( A  e.  CC  ->  ( A  x.  1 )  =  A )
53, 4eqtrd 2239 1  |-  ( A  e.  CC  ->  (
1  x.  A )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177  (class class class)co 5962   CCcc 7953   1c1 7956    x. cmul 7960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-resscn 8047  ax-1cn 8048  ax-icn 8050  ax-addcl 8051  ax-mulcl 8053  ax-mulcom 8056  ax-mulass 8058  ax-distr 8059  ax-1rid 8062  ax-cnre 8066
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-iota 5246  df-fv 5293  df-ov 5965
This theorem is referenced by:  mullidi  8105  mullidd  8120  mulid2d  8121  muladd11  8235  1p1times  8236  mulm1  8502  div1  8806  recdivap  8821  divdivap2  8827  conjmulap  8832  expp1  10723  recan  11505  arisum  11894  geo2sum  11910  prodrbdclem  11967  prodmodclem2a  11972  demoivreALT  12170  gcdadd  12391  gcdid  12392  cncrng  14416  cnfld1  14419
  Copyright terms: Public domain W3C validator