| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mullid | Unicode version | ||
| Description: Identity law for multiplication. Note: see mulrid 8025 for commuted version. (Contributed by NM, 8-Oct-1999.) |
| Ref | Expression |
|---|---|
| mullid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 7974 |
. . 3
| |
| 2 | mulcom 8010 |
. . 3
| |
| 3 | 1, 2 | mpan 424 |
. 2
|
| 4 | mulrid 8025 |
. 2
| |
| 5 | 3, 4 | eqtrd 2229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7973 ax-1cn 7974 ax-icn 7976 ax-addcl 7977 ax-mulcl 7979 ax-mulcom 7982 ax-mulass 7984 ax-distr 7985 ax-1rid 7988 ax-cnre 7992 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5926 |
| This theorem is referenced by: mullidi 8031 mullidd 8046 mulid2d 8047 muladd11 8161 1p1times 8162 mulm1 8428 div1 8732 recdivap 8747 divdivap2 8753 conjmulap 8758 expp1 10640 recan 11276 arisum 11665 geo2sum 11681 prodrbdclem 11738 prodmodclem2a 11743 demoivreALT 11941 gcdadd 12162 gcdid 12163 cncrng 14135 cnfld1 14138 |
| Copyright terms: Public domain | W3C validator |