| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mullid | Unicode version | ||
| Description: Identity law for multiplication. Note: see mulrid 8023 for commuted version. (Contributed by NM, 8-Oct-1999.) | 
| Ref | Expression | 
|---|---|
| mullid | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-1cn 7972 | 
. . 3
 | |
| 2 | mulcom 8008 | 
. . 3
 | |
| 3 | 1, 2 | mpan 424 | 
. 2
 | 
| 4 | mulrid 8023 | 
. 2
 | |
| 5 | 3, 4 | eqtrd 2229 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7971 ax-1cn 7972 ax-icn 7974 ax-addcl 7975 ax-mulcl 7977 ax-mulcom 7980 ax-mulass 7982 ax-distr 7983 ax-1rid 7986 ax-cnre 7990 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 | 
| This theorem is referenced by: mullidi 8029 mullidd 8044 mulid2d 8045 muladd11 8159 1p1times 8160 mulm1 8426 div1 8730 recdivap 8745 divdivap2 8751 conjmulap 8756 expp1 10638 recan 11274 arisum 11663 geo2sum 11679 prodrbdclem 11736 prodmodclem2a 11741 demoivreALT 11939 gcdadd 12152 gcdid 12153 cncrng 14125 cnfld1 14128 | 
| Copyright terms: Public domain | W3C validator |