![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mullid | Unicode version |
Description: Identity law for multiplication. Note: see mulrid 7983 for commuted version. (Contributed by NM, 8-Oct-1999.) |
Ref | Expression |
---|---|
mullid |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7933 |
. . 3
![]() ![]() ![]() ![]() | |
2 | mulcom 7969 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpan 424 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | mulrid 7983 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | eqtrd 2222 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 ax-resscn 7932 ax-1cn 7933 ax-icn 7935 ax-addcl 7936 ax-mulcl 7938 ax-mulcom 7941 ax-mulass 7943 ax-distr 7944 ax-1rid 7947 ax-cnre 7951 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-iota 5196 df-fv 5243 df-ov 5898 |
This theorem is referenced by: mullidi 7989 mullidd 8004 mulid2d 8005 muladd11 8119 1p1times 8120 mulm1 8386 div1 8689 recdivap 8704 divdivap2 8710 conjmulap 8715 expp1 10557 recan 11149 arisum 11537 geo2sum 11553 prodrbdclem 11610 prodmodclem2a 11615 demoivreALT 11812 gcdadd 12017 gcdid 12018 cncrng 13869 cnfld1 13872 |
Copyright terms: Public domain | W3C validator |