| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mullid | Unicode version | ||
| Description: Identity law for multiplication. Note: see mulrid 8069 for commuted version. (Contributed by NM, 8-Oct-1999.) |
| Ref | Expression |
|---|---|
| mullid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 8018 |
. . 3
| |
| 2 | mulcom 8054 |
. . 3
| |
| 3 | 1, 2 | mpan 424 |
. 2
|
| 4 | mulrid 8069 |
. 2
| |
| 5 | 3, 4 | eqtrd 2238 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-resscn 8017 ax-1cn 8018 ax-icn 8020 ax-addcl 8021 ax-mulcl 8023 ax-mulcom 8026 ax-mulass 8028 ax-distr 8029 ax-1rid 8032 ax-cnre 8036 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 |
| This theorem is referenced by: mullidi 8075 mullidd 8090 mulid2d 8091 muladd11 8205 1p1times 8206 mulm1 8472 div1 8776 recdivap 8791 divdivap2 8797 conjmulap 8802 expp1 10691 recan 11420 arisum 11809 geo2sum 11825 prodrbdclem 11882 prodmodclem2a 11887 demoivreALT 12085 gcdadd 12306 gcdid 12307 cncrng 14331 cnfld1 14334 |
| Copyright terms: Public domain | W3C validator |