ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mullid Unicode version

Theorem mullid 8019
Description: Identity law for multiplication. Note: see mulrid 8018 for commuted version. (Contributed by NM, 8-Oct-1999.)
Assertion
Ref Expression
mullid  |-  ( A  e.  CC  ->  (
1  x.  A )  =  A )

Proof of Theorem mullid
StepHypRef Expression
1 ax-1cn 7967 . . 3  |-  1  e.  CC
2 mulcom 8003 . . 3  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  x.  A
)  =  ( A  x.  1 ) )
31, 2mpan 424 . 2  |-  ( A  e.  CC  ->  (
1  x.  A )  =  ( A  x.  1 ) )
4 mulrid 8018 . 2  |-  ( A  e.  CC  ->  ( A  x.  1 )  =  A )
53, 4eqtrd 2226 1  |-  ( A  e.  CC  ->  (
1  x.  A )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164  (class class class)co 5919   CCcc 7872   1c1 7875    x. cmul 7879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-resscn 7966  ax-1cn 7967  ax-icn 7969  ax-addcl 7970  ax-mulcl 7972  ax-mulcom 7975  ax-mulass 7977  ax-distr 7978  ax-1rid 7981  ax-cnre 7985
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-iota 5216  df-fv 5263  df-ov 5922
This theorem is referenced by:  mullidi  8024  mullidd  8039  mulid2d  8040  muladd11  8154  1p1times  8155  mulm1  8421  div1  8724  recdivap  8739  divdivap2  8745  conjmulap  8750  expp1  10620  recan  11256  arisum  11644  geo2sum  11660  prodrbdclem  11717  prodmodclem2a  11722  demoivreALT  11920  gcdadd  12125  gcdid  12126  cncrng  14068  cnfld1  14071
  Copyright terms: Public domain W3C validator