ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mullid Unicode version

Theorem mullid 8140
Description: Identity law for multiplication. Note: see mulrid 8139 for commuted version. (Contributed by NM, 8-Oct-1999.)
Assertion
Ref Expression
mullid  |-  ( A  e.  CC  ->  (
1  x.  A )  =  A )

Proof of Theorem mullid
StepHypRef Expression
1 ax-1cn 8088 . . 3  |-  1  e.  CC
2 mulcom 8124 . . 3  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  x.  A
)  =  ( A  x.  1 ) )
31, 2mpan 424 . 2  |-  ( A  e.  CC  ->  (
1  x.  A )  =  ( A  x.  1 ) )
4 mulrid 8139 . 2  |-  ( A  e.  CC  ->  ( A  x.  1 )  =  A )
53, 4eqtrd 2262 1  |-  ( A  e.  CC  ->  (
1  x.  A )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200  (class class class)co 6000   CCcc 7993   1c1 7996    x. cmul 8000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-resscn 8087  ax-1cn 8088  ax-icn 8090  ax-addcl 8091  ax-mulcl 8093  ax-mulcom 8096  ax-mulass 8098  ax-distr 8099  ax-1rid 8102  ax-cnre 8106
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-iota 5277  df-fv 5325  df-ov 6003
This theorem is referenced by:  mullidi  8145  mullidd  8160  mulid2d  8161  muladd11  8275  1p1times  8276  mulm1  8542  div1  8846  recdivap  8861  divdivap2  8867  conjmulap  8872  expp1  10763  recan  11615  arisum  12004  geo2sum  12020  prodrbdclem  12077  prodmodclem2a  12082  demoivreALT  12280  gcdadd  12501  gcdid  12502  cncrng  14527  cnfld1  14530
  Copyright terms: Public domain W3C validator