| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mullid | Unicode version | ||
| Description: Identity law for multiplication. Note: see mulrid 8099 for commuted version. (Contributed by NM, 8-Oct-1999.) |
| Ref | Expression |
|---|---|
| mullid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 8048 |
. . 3
| |
| 2 | mulcom 8084 |
. . 3
| |
| 3 | 1, 2 | mpan 424 |
. 2
|
| 4 | mulrid 8099 |
. 2
| |
| 5 | 3, 4 | eqtrd 2239 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-resscn 8047 ax-1cn 8048 ax-icn 8050 ax-addcl 8051 ax-mulcl 8053 ax-mulcom 8056 ax-mulass 8058 ax-distr 8059 ax-1rid 8062 ax-cnre 8066 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-iota 5246 df-fv 5293 df-ov 5965 |
| This theorem is referenced by: mullidi 8105 mullidd 8120 mulid2d 8121 muladd11 8235 1p1times 8236 mulm1 8502 div1 8806 recdivap 8821 divdivap2 8827 conjmulap 8832 expp1 10723 recan 11505 arisum 11894 geo2sum 11910 prodrbdclem 11967 prodmodclem2a 11972 demoivreALT 12170 gcdadd 12391 gcdid 12392 cncrng 14416 cnfld1 14419 |
| Copyright terms: Public domain | W3C validator |