ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mullid Unicode version

Theorem mullid 8070
Description: Identity law for multiplication. Note: see mulrid 8069 for commuted version. (Contributed by NM, 8-Oct-1999.)
Assertion
Ref Expression
mullid  |-  ( A  e.  CC  ->  (
1  x.  A )  =  A )

Proof of Theorem mullid
StepHypRef Expression
1 ax-1cn 8018 . . 3  |-  1  e.  CC
2 mulcom 8054 . . 3  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  x.  A
)  =  ( A  x.  1 ) )
31, 2mpan 424 . 2  |-  ( A  e.  CC  ->  (
1  x.  A )  =  ( A  x.  1 ) )
4 mulrid 8069 . 2  |-  ( A  e.  CC  ->  ( A  x.  1 )  =  A )
53, 4eqtrd 2238 1  |-  ( A  e.  CC  ->  (
1  x.  A )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176  (class class class)co 5944   CCcc 7923   1c1 7926    x. cmul 7930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-resscn 8017  ax-1cn 8018  ax-icn 8020  ax-addcl 8021  ax-mulcl 8023  ax-mulcom 8026  ax-mulass 8028  ax-distr 8029  ax-1rid 8032  ax-cnre 8036
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-iota 5232  df-fv 5279  df-ov 5947
This theorem is referenced by:  mullidi  8075  mullidd  8090  mulid2d  8091  muladd11  8205  1p1times  8206  mulm1  8472  div1  8776  recdivap  8791  divdivap2  8797  conjmulap  8802  expp1  10691  recan  11420  arisum  11809  geo2sum  11825  prodrbdclem  11882  prodmodclem2a  11887  demoivreALT  12085  gcdadd  12306  gcdid  12307  cncrng  14331  cnfld1  14334
  Copyright terms: Public domain W3C validator