| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulridd | Unicode version | ||
| Description: Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 |
|
| Ref | Expression |
|---|---|
| mulridd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 |
. 2
| |
| 2 | mulrid 8099 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-resscn 8047 ax-1cn 8048 ax-icn 8050 ax-addcl 8051 ax-mulcl 8053 ax-mulcom 8056 ax-mulass 8058 ax-distr 8059 ax-1rid 8062 ax-cnre 8066 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-iota 5246 df-fv 5293 df-ov 5965 |
| This theorem is referenced by: muladd11 8235 muls1d 8520 ltmul1 8695 mulap0 8757 divrecap 8791 diveqap1 8808 conjmulap 8832 apmul1 8891 qapne 9790 divelunit 10154 modqid 10526 q2submod 10562 addmodlteq 10575 expadd 10758 leexp2r 10770 nnlesq 10820 sqoddm1div8 10870 nn0opthlem1d 10897 faclbnd 10918 faclbnd2 10919 faclbnd6 10921 facavg 10923 bcn0 10932 bcn1 10935 reccn2ap 11709 hash2iun1dif1 11876 binom11 11882 trireciplem 11896 geosergap 11902 cvgratnnlemnexp 11920 cvgratnnlemmn 11921 fprodsplitdc 11992 efzval 12079 tanaddaplem 12134 tanaddap 12135 cos01gt0 12159 absef 12166 1dvds 12201 bitsfzo 12351 bitsmod 12352 bezoutlema 12405 bezoutlemb 12406 gcdmultiple 12426 sqgcd 12435 lcm1 12488 coprmdvds 12499 qredeu 12504 phiprmpw 12629 coprimeprodsq 12665 pc2dvds 12738 sumhashdc 12755 fldivp1 12756 pcfaclem 12757 prmpwdvds 12763 zsssubrg 14432 mulgrhm2 14457 znrrg 14507 dveflem 15283 plyconst 15302 plycolemc 15315 efper 15364 tangtx 15395 logdivlti 15438 rpcxpmul2 15470 relogbexpap 15515 rplogbcxp 15520 0sgm 15542 lgsdir2 15595 lgsquad2lem1 15643 lgsquad3 15646 2sqlem6 15682 2sqlem8 15685 trilpolemclim 16147 trilpolemisumle 16149 trilpolemeq1 16151 trilpolemlt1 16152 redcwlpolemeq1 16165 nconstwlpolemgt0 16175 |
| Copyright terms: Public domain | W3C validator |