| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulridd | Unicode version | ||
| Description: Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 |
|
| Ref | Expression |
|---|---|
| mulridd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 |
. 2
| |
| 2 | mulrid 8139 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-resscn 8087 ax-1cn 8088 ax-icn 8090 ax-addcl 8091 ax-mulcl 8093 ax-mulcom 8096 ax-mulass 8098 ax-distr 8099 ax-1rid 8102 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 |
| This theorem is referenced by: muladd11 8275 muls1d 8560 ltmul1 8735 mulap0 8797 divrecap 8831 diveqap1 8848 conjmulap 8872 apmul1 8931 qapne 9830 divelunit 10194 modqid 10566 q2submod 10602 addmodlteq 10615 expadd 10798 leexp2r 10810 nnlesq 10860 sqoddm1div8 10910 nn0opthlem1d 10937 faclbnd 10958 faclbnd2 10959 faclbnd6 10961 facavg 10963 bcn0 10972 bcn1 10975 reccn2ap 11819 hash2iun1dif1 11986 binom11 11992 trireciplem 12006 geosergap 12012 cvgratnnlemnexp 12030 cvgratnnlemmn 12031 fprodsplitdc 12102 efzval 12189 tanaddaplem 12244 tanaddap 12245 cos01gt0 12269 absef 12276 1dvds 12311 bitsfzo 12461 bitsmod 12462 bezoutlema 12515 bezoutlemb 12516 gcdmultiple 12536 sqgcd 12545 lcm1 12598 coprmdvds 12609 qredeu 12614 phiprmpw 12739 coprimeprodsq 12775 pc2dvds 12848 sumhashdc 12865 fldivp1 12866 pcfaclem 12867 prmpwdvds 12873 zsssubrg 14543 mulgrhm2 14568 znrrg 14618 dveflem 15394 plyconst 15413 plycolemc 15426 efper 15475 tangtx 15506 logdivlti 15549 rpcxpmul2 15581 relogbexpap 15626 rplogbcxp 15631 0sgm 15653 lgsdir2 15706 lgsquad2lem1 15754 lgsquad3 15757 2sqlem6 15793 2sqlem8 15796 trilpolemclim 16363 trilpolemisumle 16365 trilpolemeq1 16367 trilpolemlt1 16368 redcwlpolemeq1 16381 nconstwlpolemgt0 16391 |
| Copyright terms: Public domain | W3C validator |