![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulridd | Unicode version |
Description: Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addcld.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mulridd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcld.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | mulrid 8018 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-resscn 7966 ax-1cn 7967 ax-icn 7969 ax-addcl 7970 ax-mulcl 7972 ax-mulcom 7975 ax-mulass 7977 ax-distr 7978 ax-1rid 7981 ax-cnre 7985 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-iota 5216 df-fv 5263 df-ov 5922 |
This theorem is referenced by: muladd11 8154 ltmul1 8613 mulap0 8675 divrecap 8709 diveqap1 8726 conjmulap 8750 apmul1 8809 qapne 9707 divelunit 10071 modqid 10423 q2submod 10459 addmodlteq 10472 expadd 10655 leexp2r 10667 nnlesq 10717 sqoddm1div8 10767 nn0opthlem1d 10794 faclbnd 10815 faclbnd2 10816 faclbnd6 10818 facavg 10820 bcn0 10829 bcn1 10832 reccn2ap 11459 hash2iun1dif1 11626 binom11 11632 trireciplem 11646 geosergap 11652 cvgratnnlemnexp 11670 cvgratnnlemmn 11671 fprodsplitdc 11742 efzval 11829 tanaddaplem 11884 tanaddap 11885 cos01gt0 11909 absef 11916 1dvds 11951 bezoutlema 12139 bezoutlemb 12140 gcdmultiple 12160 sqgcd 12169 lcm1 12222 coprmdvds 12233 qredeu 12238 phiprmpw 12363 coprimeprodsq 12398 pc2dvds 12471 sumhashdc 12488 fldivp1 12489 pcfaclem 12490 prmpwdvds 12496 zsssubrg 14084 mulgrhm2 14109 znrrg 14159 dveflem 14905 plyconst 14924 plycolemc 14936 efper 14983 tangtx 15014 logdivlti 15057 relogbexpap 15131 rplogbcxp 15136 lgsdir2 15190 lgsquad2lem1 15238 lgsquad3 15241 2sqlem6 15277 2sqlem8 15280 trilpolemclim 15596 trilpolemisumle 15598 trilpolemeq1 15600 trilpolemlt1 15601 redcwlpolemeq1 15614 nconstwlpolemgt0 15624 |
Copyright terms: Public domain | W3C validator |