| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulridd | Unicode version | ||
| Description: Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 |
|
| Ref | Expression |
|---|---|
| mulridd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 |
. 2
| |
| 2 | mulrid 8069 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-resscn 8017 ax-1cn 8018 ax-icn 8020 ax-addcl 8021 ax-mulcl 8023 ax-mulcom 8026 ax-mulass 8028 ax-distr 8029 ax-1rid 8032 ax-cnre 8036 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 |
| This theorem is referenced by: muladd11 8205 muls1d 8490 ltmul1 8665 mulap0 8727 divrecap 8761 diveqap1 8778 conjmulap 8802 apmul1 8861 qapne 9760 divelunit 10124 modqid 10494 q2submod 10530 addmodlteq 10543 expadd 10726 leexp2r 10738 nnlesq 10788 sqoddm1div8 10838 nn0opthlem1d 10865 faclbnd 10886 faclbnd2 10887 faclbnd6 10889 facavg 10891 bcn0 10900 bcn1 10903 reccn2ap 11624 hash2iun1dif1 11791 binom11 11797 trireciplem 11811 geosergap 11817 cvgratnnlemnexp 11835 cvgratnnlemmn 11836 fprodsplitdc 11907 efzval 11994 tanaddaplem 12049 tanaddap 12050 cos01gt0 12074 absef 12081 1dvds 12116 bitsfzo 12266 bitsmod 12267 bezoutlema 12320 bezoutlemb 12321 gcdmultiple 12341 sqgcd 12350 lcm1 12403 coprmdvds 12414 qredeu 12419 phiprmpw 12544 coprimeprodsq 12580 pc2dvds 12653 sumhashdc 12670 fldivp1 12671 pcfaclem 12672 prmpwdvds 12678 zsssubrg 14347 mulgrhm2 14372 znrrg 14422 dveflem 15198 plyconst 15217 plycolemc 15230 efper 15279 tangtx 15310 logdivlti 15353 rpcxpmul2 15385 relogbexpap 15430 rplogbcxp 15435 0sgm 15457 lgsdir2 15510 lgsquad2lem1 15558 lgsquad3 15561 2sqlem6 15597 2sqlem8 15600 trilpolemclim 15975 trilpolemisumle 15977 trilpolemeq1 15979 trilpolemlt1 15980 redcwlpolemeq1 15993 nconstwlpolemgt0 16003 |
| Copyright terms: Public domain | W3C validator |