| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulridd | Unicode version | ||
| Description: Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 |
|
| Ref | Expression |
|---|---|
| mulridd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 |
. 2
| |
| 2 | mulrid 8068 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-resscn 8016 ax-1cn 8017 ax-icn 8019 ax-addcl 8020 ax-mulcl 8022 ax-mulcom 8025 ax-mulass 8027 ax-distr 8028 ax-1rid 8031 ax-cnre 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-iota 5231 df-fv 5278 df-ov 5946 |
| This theorem is referenced by: muladd11 8204 muls1d 8489 ltmul1 8664 mulap0 8726 divrecap 8760 diveqap1 8777 conjmulap 8801 apmul1 8860 qapne 9759 divelunit 10123 modqid 10492 q2submod 10528 addmodlteq 10541 expadd 10724 leexp2r 10736 nnlesq 10786 sqoddm1div8 10836 nn0opthlem1d 10863 faclbnd 10884 faclbnd2 10885 faclbnd6 10887 facavg 10889 bcn0 10898 bcn1 10901 reccn2ap 11566 hash2iun1dif1 11733 binom11 11739 trireciplem 11753 geosergap 11759 cvgratnnlemnexp 11777 cvgratnnlemmn 11778 fprodsplitdc 11849 efzval 11936 tanaddaplem 11991 tanaddap 11992 cos01gt0 12016 absef 12023 1dvds 12058 bitsfzo 12208 bitsmod 12209 bezoutlema 12262 bezoutlemb 12263 gcdmultiple 12283 sqgcd 12292 lcm1 12345 coprmdvds 12356 qredeu 12361 phiprmpw 12486 coprimeprodsq 12522 pc2dvds 12595 sumhashdc 12612 fldivp1 12613 pcfaclem 12614 prmpwdvds 12620 zsssubrg 14289 mulgrhm2 14314 znrrg 14364 dveflem 15140 plyconst 15159 plycolemc 15172 efper 15221 tangtx 15252 logdivlti 15295 rpcxpmul2 15327 relogbexpap 15372 rplogbcxp 15377 0sgm 15399 lgsdir2 15452 lgsquad2lem1 15500 lgsquad3 15503 2sqlem6 15539 2sqlem8 15542 trilpolemclim 15908 trilpolemisumle 15910 trilpolemeq1 15912 trilpolemlt1 15913 redcwlpolemeq1 15926 nconstwlpolemgt0 15936 |
| Copyright terms: Public domain | W3C validator |