ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neisspw Unicode version

Theorem neisspw 13219
Description: The neighborhoods of any set are subsets of the base set. (Contributed by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
neifval.1  |-  X  = 
U. J
Assertion
Ref Expression
neisspw  |-  ( J  e.  Top  ->  (
( nei `  J
) `  S )  C_ 
~P X )

Proof of Theorem neisspw
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 neifval.1 . . . . 5  |-  X  = 
U. J
21neii1 13218 . . . 4  |-  ( ( J  e.  Top  /\  v  e.  ( ( nei `  J ) `  S ) )  -> 
v  C_  X )
3 velpw 3579 . . . 4  |-  ( v  e.  ~P X  <->  v  C_  X )
42, 3sylibr 134 . . 3  |-  ( ( J  e.  Top  /\  v  e.  ( ( nei `  J ) `  S ) )  -> 
v  e.  ~P X
)
54ex 115 . 2  |-  ( J  e.  Top  ->  (
v  e.  ( ( nei `  J ) `
 S )  -> 
v  e.  ~P X
) )
65ssrdv 3159 1  |-  ( J  e.  Top  ->  (
( nei `  J
) `  S )  C_ 
~P X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2146    C_ wss 3127   ~Pcpw 3572   U.cuni 3805   ` cfv 5208   Topctop 13066   neicnei 13209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-top 13067  df-nei 13210
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator