ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neisspw GIF version

Theorem neisspw 14384
Description: The neighborhoods of any set are subsets of the base set. (Contributed by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
neifval.1 𝑋 = 𝐽
Assertion
Ref Expression
neisspw (𝐽 ∈ Top → ((nei‘𝐽)‘𝑆) ⊆ 𝒫 𝑋)

Proof of Theorem neisspw
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 neifval.1 . . . . 5 𝑋 = 𝐽
21neii1 14383 . . . 4 ((𝐽 ∈ Top ∧ 𝑣 ∈ ((nei‘𝐽)‘𝑆)) → 𝑣𝑋)
3 velpw 3612 . . . 4 (𝑣 ∈ 𝒫 𝑋𝑣𝑋)
42, 3sylibr 134 . . 3 ((𝐽 ∈ Top ∧ 𝑣 ∈ ((nei‘𝐽)‘𝑆)) → 𝑣 ∈ 𝒫 𝑋)
54ex 115 . 2 (𝐽 ∈ Top → (𝑣 ∈ ((nei‘𝐽)‘𝑆) → 𝑣 ∈ 𝒫 𝑋))
65ssrdv 3189 1 (𝐽 ∈ Top → ((nei‘𝐽)‘𝑆) ⊆ 𝒫 𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wss 3157  𝒫 cpw 3605   cuni 3839  cfv 5258  Topctop 14233  neicnei 14374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-top 14234  df-nei 14375
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator