| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nffvmpt1 | Unicode version | ||
| Description: Bound-variable hypothesis builder for mapping, special case. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| nffvmpt1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfmpt1 4177 |
. 2
| |
| 2 | nfcv 2372 |
. 2
| |
| 3 | 1, 2 | nffv 5637 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-iota 5278 df-fv 5326 |
| This theorem is referenced by: fvmptt 5726 fmptco 5801 offval2 6234 ofrfval2 6235 mptelixpg 6881 dom2lem 6923 cc2 7453 fsumf1o 11901 fsum3cvg2 11905 fsumadd 11917 isummulc2 11937 isumshft 12001 fprodf1o 12099 prdsbas3 13320 txcnp 14945 cnmpt1t 14959 elplyd 15415 |
| Copyright terms: Public domain | W3C validator |