ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffvmpt1 Unicode version

Theorem nffvmpt1 5505
Description: Bound-variable hypothesis builder for mapping, special case. (Contributed by Mario Carneiro, 25-Dec-2016.)
Assertion
Ref Expression
nffvmpt1  |-  F/_ x
( ( x  e.  A  |->  B ) `  C )
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem nffvmpt1
StepHypRef Expression
1 nfmpt1 4080 . 2  |-  F/_ x
( x  e.  A  |->  B )
2 nfcv 2312 . 2  |-  F/_ x C
31, 2nffv 5504 1  |-  F/_ x
( ( x  e.  A  |->  B ) `  C )
Colors of variables: wff set class
Syntax hints:   F/_wnfc 2299    |-> cmpt 4048   ` cfv 5196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-un 3125  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-mpt 4050  df-iota 5158  df-fv 5204
This theorem is referenced by:  fvmptt  5585  fmptco  5660  offval2  6074  ofrfval2  6075  mptelixpg  6709  dom2lem  6747  cc2  7218  fsumf1o  11342  fsum3cvg2  11346  fsumadd  11358  isummulc2  11378  isumshft  11442  fprodf1o  11540  txcnp  13026  cnmpt1t  13040
  Copyright terms: Public domain W3C validator