ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omsson Unicode version

Theorem omsson 4660
Description: Omega is a subset of  On. (Contributed by NM, 13-Jun-1994.)
Assertion
Ref Expression
omsson  |-  om  C_  On

Proof of Theorem omsson
StepHypRef Expression
1 nnon 4657 . 2  |-  ( x  e.  om  ->  x  e.  On )
21ssriv 3196 1  |-  om  C_  On
Colors of variables: wff set class
Syntax hints:    C_ wss 3165   Oncon0 4409   omcom 4637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-iinf 4635
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-uni 3850  df-int 3885  df-tr 4142  df-iord 4412  df-on 4414  df-suc 4417  df-iom 4638
This theorem is referenced by:  frecfnom  6486  frecrdg  6493  ficardon  7295  dmaddpi  7437  dmmulpi  7438
  Copyright terms: Public domain W3C validator