ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ficardon Unicode version

Theorem ficardon 7349
Description: The cardinal number of a finite set is an ordinal. (Contributed by Jim Kingdon, 1-Nov-2025.)
Assertion
Ref Expression
ficardon  |-  ( A  e.  Fin  ->  ( card `  A )  e.  On )

Proof of Theorem ficardon
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 isfi 6902 . . . 4  |-  ( A  e.  Fin  <->  E. x  e.  om  A  ~~  x
)
2 omsson 4702 . . . . 5  |-  om  C_  On
3 ssrexv 3289 . . . . 5  |-  ( om  C_  On  ->  ( E. x  e.  om  A  ~~  x  ->  E. x  e.  On  A  ~~  x ) )
42, 3ax-mp 5 . . . 4  |-  ( E. x  e.  om  A  ~~  x  ->  E. x  e.  On  A  ~~  x
)
51, 4sylbi 121 . . 3  |-  ( A  e.  Fin  ->  E. x  e.  On  A  ~~  x
)
6 ensymb 6922 . . . 4  |-  ( A 
~~  x  <->  x  ~~  A )
76rexbii 2537 . . 3  |-  ( E. x  e.  On  A  ~~  x  <->  E. x  e.  On  x  ~~  A )
85, 7sylib 122 . 2  |-  ( A  e.  Fin  ->  E. x  e.  On  x  ~~  A
)
9 cardcl 7341 . 2  |-  ( E. x  e.  On  x  ~~  A  ->  ( card `  A )  e.  On )
108, 9syl 14 1  |-  ( A  e.  Fin  ->  ( card `  A )  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200   E.wrex 2509    C_ wss 3197   class class class wbr 4082   Oncon0 4451   omcom 4679   ` cfv 5314    ~~ cen 6875   Fincfn 6877   cardccrd 7337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-iinf 4677
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-iord 4454  df-on 4456  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-er 6670  df-en 6878  df-fin 6880  df-card 7339
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator