![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > omsson | GIF version |
Description: Omega is a subset of On. (Contributed by NM, 13-Jun-1994.) |
Ref | Expression |
---|---|
omsson | ⊢ ω ⊆ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 4642 | . 2 ⊢ (𝑥 ∈ ω → 𝑥 ∈ On) | |
2 | 1 | ssriv 3183 | 1 ⊢ ω ⊆ On |
Colors of variables: wff set class |
Syntax hints: ⊆ wss 3153 Oncon0 4394 ωcom 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-uni 3836 df-int 3871 df-tr 4128 df-iord 4397 df-on 4399 df-suc 4402 df-iom 4623 |
This theorem is referenced by: frecfnom 6454 frecrdg 6461 dmaddpi 7385 dmmulpi 7386 |
Copyright terms: Public domain | W3C validator |