ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omsson GIF version

Theorem omsson 4682
Description: Omega is a subset of On. (Contributed by NM, 13-Jun-1994.)
Assertion
Ref Expression
omsson ω ⊆ On

Proof of Theorem omsson
StepHypRef Expression
1 nnon 4679 . 2 (𝑥 ∈ ω → 𝑥 ∈ On)
21ssriv 3208 1 ω ⊆ On
Colors of variables: wff set class
Syntax hints:  wss 3177  Oncon0 4431  ωcom 4659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-iinf 4657
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-uni 3868  df-int 3903  df-tr 4162  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660
This theorem is referenced by:  frecfnom  6517  frecrdg  6524  ficardon  7329  dmaddpi  7480  dmmulpi  7481
  Copyright terms: Public domain W3C validator