ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omsson GIF version

Theorem omsson 4572
Description: Omega is a subset of On. (Contributed by NM, 13-Jun-1994.)
Assertion
Ref Expression
omsson ω ⊆ On

Proof of Theorem omsson
StepHypRef Expression
1 nnon 4569 . 2 (𝑥 ∈ ω → 𝑥 ∈ On)
21ssriv 3132 1 ω ⊆ On
Colors of variables: wff set class
Syntax hints:  wss 3102  Oncon0 4323  ωcom 4549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-iinf 4547
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-uni 3773  df-int 3808  df-tr 4063  df-iord 4326  df-on 4328  df-suc 4331  df-iom 4550
This theorem is referenced by:  frecfnom  6348  frecrdg  6355  dmaddpi  7245  dmmulpi  7246
  Copyright terms: Public domain W3C validator