ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeldm GIF version

Theorem opeldm 4750
Description: Membership of first of an ordered pair in a domain. (Contributed by NM, 30-Jul-1995.)
Hypotheses
Ref Expression
opeldm.1 𝐴 ∈ V
opeldm.2 𝐵 ∈ V
Assertion
Ref Expression
opeldm (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴 ∈ dom 𝐶)

Proof of Theorem opeldm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 opeldm.2 . . 3 𝐵 ∈ V
2 opeq2 3714 . . . 4 (𝑦 = 𝐵 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
32eleq1d 2209 . . 3 (𝑦 = 𝐵 → (⟨𝐴, 𝑦⟩ ∈ 𝐶 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐶))
41, 3spcev 2784 . 2 (⟨𝐴, 𝐵⟩ ∈ 𝐶 → ∃𝑦𝐴, 𝑦⟩ ∈ 𝐶)
5 opeldm.1 . . 3 𝐴 ∈ V
65eldm2 4745 . 2 (𝐴 ∈ dom 𝐶 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐶)
74, 6sylibr 133 1 (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴 ∈ dom 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1332  wex 1469  wcel 1481  Vcvv 2689  cop 3535  dom cdm 4547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-v 2691  df-un 3080  df-sn 3538  df-pr 3539  df-op 3541  df-br 3938  df-dm 4557
This theorem is referenced by:  breldm  4751  elreldm  4773  relssres  4865  iss  4873  imadmrn  4899  dfco2a  5047  funssres  5173  funun  5175  iinerm  6509
  Copyright terms: Public domain W3C validator