Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opeldm | GIF version |
Description: Membership of first of an ordered pair in a domain. (Contributed by NM, 30-Jul-1995.) |
Ref | Expression |
---|---|
opeldm.1 | ⊢ 𝐴 ∈ V |
opeldm.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opeldm | ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeldm.2 | . . 3 ⊢ 𝐵 ∈ V | |
2 | opeq2 3759 | . . . 4 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
3 | 2 | eleq1d 2235 | . . 3 ⊢ (𝑦 = 𝐵 → (〈𝐴, 𝑦〉 ∈ 𝐶 ↔ 〈𝐴, 𝐵〉 ∈ 𝐶)) |
4 | 1, 3 | spcev 2821 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐶) |
5 | opeldm.1 | . . 3 ⊢ 𝐴 ∈ V | |
6 | 5 | eldm2 4802 | . 2 ⊢ (𝐴 ∈ dom 𝐶 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐶) |
7 | 4, 6 | sylibr 133 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∃wex 1480 ∈ wcel 2136 Vcvv 2726 〈cop 3579 dom cdm 4604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-dm 4614 |
This theorem is referenced by: breldm 4808 elreldm 4830 relssres 4922 iss 4930 imadmrn 4956 dfco2a 5104 funssres 5230 funun 5232 iinerm 6573 |
Copyright terms: Public domain | W3C validator |