ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeldm GIF version

Theorem opeldm 4807
Description: Membership of first of an ordered pair in a domain. (Contributed by NM, 30-Jul-1995.)
Hypotheses
Ref Expression
opeldm.1 𝐴 ∈ V
opeldm.2 𝐵 ∈ V
Assertion
Ref Expression
opeldm (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴 ∈ dom 𝐶)

Proof of Theorem opeldm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 opeldm.2 . . 3 𝐵 ∈ V
2 opeq2 3759 . . . 4 (𝑦 = 𝐵 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
32eleq1d 2235 . . 3 (𝑦 = 𝐵 → (⟨𝐴, 𝑦⟩ ∈ 𝐶 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐶))
41, 3spcev 2821 . 2 (⟨𝐴, 𝐵⟩ ∈ 𝐶 → ∃𝑦𝐴, 𝑦⟩ ∈ 𝐶)
5 opeldm.1 . . 3 𝐴 ∈ V
65eldm2 4802 . 2 (𝐴 ∈ dom 𝐶 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐶)
74, 6sylibr 133 1 (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴 ∈ dom 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wex 1480  wcel 2136  Vcvv 2726  cop 3579  dom cdm 4604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-dm 4614
This theorem is referenced by:  breldm  4808  elreldm  4830  relssres  4922  iss  4930  imadmrn  4956  dfco2a  5104  funssres  5230  funun  5232  iinerm  6573
  Copyright terms: Public domain W3C validator