![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opeldm | GIF version |
Description: Membership of first of an ordered pair in a domain. (Contributed by NM, 30-Jul-1995.) |
Ref | Expression |
---|---|
opeldm.1 | ⊢ 𝐴 ∈ V |
opeldm.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opeldm | ⊢ (⟨𝐴, 𝐵⟩ ∈ 𝐶 → 𝐴 ∈ dom 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeldm.2 | . . 3 ⊢ 𝐵 ∈ V | |
2 | opeq2 3781 | . . . 4 ⊢ (𝑦 = 𝐵 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝐵⟩) | |
3 | 2 | eleq1d 2246 | . . 3 ⊢ (𝑦 = 𝐵 → (⟨𝐴, 𝑦⟩ ∈ 𝐶 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐶)) |
4 | 1, 3 | spcev 2834 | . 2 ⊢ (⟨𝐴, 𝐵⟩ ∈ 𝐶 → ∃𝑦⟨𝐴, 𝑦⟩ ∈ 𝐶) |
5 | opeldm.1 | . . 3 ⊢ 𝐴 ∈ V | |
6 | 5 | eldm2 4827 | . 2 ⊢ (𝐴 ∈ dom 𝐶 ↔ ∃𝑦⟨𝐴, 𝑦⟩ ∈ 𝐶) |
7 | 4, 6 | sylibr 134 | 1 ⊢ (⟨𝐴, 𝐵⟩ ∈ 𝐶 → 𝐴 ∈ dom 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∃wex 1492 ∈ wcel 2148 Vcvv 2739 ⟨cop 3597 dom cdm 4628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-dm 4638 |
This theorem is referenced by: breldm 4833 elreldm 4855 relssres 4947 iss 4955 imadmrn 4982 dfco2a 5131 funssres 5260 funun 5262 iinerm 6609 |
Copyright terms: Public domain | W3C validator |