ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fun Unicode version

Theorem fun 5368
Description: The union of two functions with disjoint domains. (Contributed by NM, 22-Sep-2004.)
Assertion
Ref Expression
fun  |-  ( ( ( F : A --> C  /\  G : B --> D )  /\  ( A  i^i  B )  =  (/) )  ->  ( F  u.  G ) : ( A  u.  B
) --> ( C  u.  D ) )

Proof of Theorem fun
StepHypRef Expression
1 fnun 5302 . . . . 5  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( A  i^i  B )  =  (/) )  ->  ( F  u.  G )  Fn  ( A  u.  B )
)
21expcom 115 . . . 4  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( F  u.  G
)  Fn  ( A  u.  B ) ) )
3 rnun 5017 . . . . . 6  |-  ran  ( F  u.  G )  =  ( ran  F  u.  ran  G )
4 unss12 3299 . . . . . 6  |-  ( ( ran  F  C_  C  /\  ran  G  C_  D
)  ->  ( ran  F  u.  ran  G ) 
C_  ( C  u.  D ) )
53, 4eqsstrid 3193 . . . . 5  |-  ( ( ran  F  C_  C  /\  ran  G  C_  D
)  ->  ran  ( F  u.  G )  C_  ( C  u.  D
) )
65a1i 9 . . . 4  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( ran  F  C_  C  /\  ran  G  C_  D
)  ->  ran  ( F  u.  G )  C_  ( C  u.  D
) ) )
72, 6anim12d 333 . . 3  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( ran  F 
C_  C  /\  ran  G 
C_  D ) )  ->  ( ( F  u.  G )  Fn  ( A  u.  B
)  /\  ran  ( F  u.  G )  C_  ( C  u.  D
) ) ) )
8 df-f 5200 . . . . 5  |-  ( F : A --> C  <->  ( F  Fn  A  /\  ran  F  C_  C ) )
9 df-f 5200 . . . . 5  |-  ( G : B --> D  <->  ( G  Fn  B  /\  ran  G  C_  D ) )
108, 9anbi12i 457 . . . 4  |-  ( ( F : A --> C  /\  G : B --> D )  <-> 
( ( F  Fn  A  /\  ran  F  C_  C )  /\  ( G  Fn  B  /\  ran  G  C_  D )
) )
11 an4 581 . . . 4  |-  ( ( ( F  Fn  A  /\  ran  F  C_  C
)  /\  ( G  Fn  B  /\  ran  G  C_  D ) )  <->  ( ( F  Fn  A  /\  G  Fn  B )  /\  ( ran  F  C_  C  /\  ran  G  C_  D ) ) )
1210, 11bitri 183 . . 3  |-  ( ( F : A --> C  /\  G : B --> D )  <-> 
( ( F  Fn  A  /\  G  Fn  B
)  /\  ( ran  F 
C_  C  /\  ran  G 
C_  D ) ) )
13 df-f 5200 . . 3  |-  ( ( F  u.  G ) : ( A  u.  B ) --> ( C  u.  D )  <->  ( ( F  u.  G )  Fn  ( A  u.  B
)  /\  ran  ( F  u.  G )  C_  ( C  u.  D
) ) )
147, 12, 133imtr4g 204 . 2  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( F : A --> C  /\  G : B --> D )  ->  ( F  u.  G ) : ( A  u.  B ) --> ( C  u.  D
) ) )
1514impcom 124 1  |-  ( ( ( F : A --> C  /\  G : B --> D )  /\  ( A  i^i  B )  =  (/) )  ->  ( F  u.  G ) : ( A  u.  B
) --> ( C  u.  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    u. cun 3119    i^i cin 3120    C_ wss 3121   (/)c0 3414   ran crn 4610    Fn wfn 5191   -->wf 5192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-br 3988  df-opab 4049  df-id 4276  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-fun 5198  df-fn 5199  df-f 5200
This theorem is referenced by:  fun2  5369  ftpg  5677  fsnunf  5693
  Copyright terms: Public domain W3C validator