ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fun Unicode version

Theorem fun 5390
Description: The union of two functions with disjoint domains. (Contributed by NM, 22-Sep-2004.)
Assertion
Ref Expression
fun  |-  ( ( ( F : A --> C  /\  G : B --> D )  /\  ( A  i^i  B )  =  (/) )  ->  ( F  u.  G ) : ( A  u.  B
) --> ( C  u.  D ) )

Proof of Theorem fun
StepHypRef Expression
1 fnun 5324 . . . . 5  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( A  i^i  B )  =  (/) )  ->  ( F  u.  G )  Fn  ( A  u.  B )
)
21expcom 116 . . . 4  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( F  u.  G
)  Fn  ( A  u.  B ) ) )
3 rnun 5039 . . . . . 6  |-  ran  ( F  u.  G )  =  ( ran  F  u.  ran  G )
4 unss12 3309 . . . . . 6  |-  ( ( ran  F  C_  C  /\  ran  G  C_  D
)  ->  ( ran  F  u.  ran  G ) 
C_  ( C  u.  D ) )
53, 4eqsstrid 3203 . . . . 5  |-  ( ( ran  F  C_  C  /\  ran  G  C_  D
)  ->  ran  ( F  u.  G )  C_  ( C  u.  D
) )
65a1i 9 . . . 4  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( ran  F  C_  C  /\  ran  G  C_  D
)  ->  ran  ( F  u.  G )  C_  ( C  u.  D
) ) )
72, 6anim12d 335 . . 3  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( ran  F 
C_  C  /\  ran  G 
C_  D ) )  ->  ( ( F  u.  G )  Fn  ( A  u.  B
)  /\  ran  ( F  u.  G )  C_  ( C  u.  D
) ) ) )
8 df-f 5222 . . . . 5  |-  ( F : A --> C  <->  ( F  Fn  A  /\  ran  F  C_  C ) )
9 df-f 5222 . . . . 5  |-  ( G : B --> D  <->  ( G  Fn  B  /\  ran  G  C_  D ) )
108, 9anbi12i 460 . . . 4  |-  ( ( F : A --> C  /\  G : B --> D )  <-> 
( ( F  Fn  A  /\  ran  F  C_  C )  /\  ( G  Fn  B  /\  ran  G  C_  D )
) )
11 an4 586 . . . 4  |-  ( ( ( F  Fn  A  /\  ran  F  C_  C
)  /\  ( G  Fn  B  /\  ran  G  C_  D ) )  <->  ( ( F  Fn  A  /\  G  Fn  B )  /\  ( ran  F  C_  C  /\  ran  G  C_  D ) ) )
1210, 11bitri 184 . . 3  |-  ( ( F : A --> C  /\  G : B --> D )  <-> 
( ( F  Fn  A  /\  G  Fn  B
)  /\  ( ran  F 
C_  C  /\  ran  G 
C_  D ) ) )
13 df-f 5222 . . 3  |-  ( ( F  u.  G ) : ( A  u.  B ) --> ( C  u.  D )  <->  ( ( F  u.  G )  Fn  ( A  u.  B
)  /\  ran  ( F  u.  G )  C_  ( C  u.  D
) ) )
147, 12, 133imtr4g 205 . 2  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( F : A --> C  /\  G : B --> D )  ->  ( F  u.  G ) : ( A  u.  B ) --> ( C  u.  D
) ) )
1514impcom 125 1  |-  ( ( ( F : A --> C  /\  G : B --> D )  /\  ( A  i^i  B )  =  (/) )  ->  ( F  u.  G ) : ( A  u.  B
) --> ( C  u.  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    u. cun 3129    i^i cin 3130    C_ wss 3131   (/)c0 3424   ran crn 4629    Fn wfn 5213   -->wf 5214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-id 4295  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-fun 5220  df-fn 5221  df-f 5222
This theorem is referenced by:  fun2  5391  ftpg  5702  fsnunf  5718
  Copyright terms: Public domain W3C validator