ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fun Unicode version

Theorem fun 5448
Description: The union of two functions with disjoint domains. (Contributed by NM, 22-Sep-2004.)
Assertion
Ref Expression
fun  |-  ( ( ( F : A --> C  /\  G : B --> D )  /\  ( A  i^i  B )  =  (/) )  ->  ( F  u.  G ) : ( A  u.  B
) --> ( C  u.  D ) )

Proof of Theorem fun
StepHypRef Expression
1 fnun 5382 . . . . 5  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( A  i^i  B )  =  (/) )  ->  ( F  u.  G )  Fn  ( A  u.  B )
)
21expcom 116 . . . 4  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( F  u.  G
)  Fn  ( A  u.  B ) ) )
3 rnun 5091 . . . . . 6  |-  ran  ( F  u.  G )  =  ( ran  F  u.  ran  G )
4 unss12 3345 . . . . . 6  |-  ( ( ran  F  C_  C  /\  ran  G  C_  D
)  ->  ( ran  F  u.  ran  G ) 
C_  ( C  u.  D ) )
53, 4eqsstrid 3239 . . . . 5  |-  ( ( ran  F  C_  C  /\  ran  G  C_  D
)  ->  ran  ( F  u.  G )  C_  ( C  u.  D
) )
65a1i 9 . . . 4  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( ran  F  C_  C  /\  ran  G  C_  D
)  ->  ran  ( F  u.  G )  C_  ( C  u.  D
) ) )
72, 6anim12d 335 . . 3  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( ran  F 
C_  C  /\  ran  G 
C_  D ) )  ->  ( ( F  u.  G )  Fn  ( A  u.  B
)  /\  ran  ( F  u.  G )  C_  ( C  u.  D
) ) ) )
8 df-f 5275 . . . . 5  |-  ( F : A --> C  <->  ( F  Fn  A  /\  ran  F  C_  C ) )
9 df-f 5275 . . . . 5  |-  ( G : B --> D  <->  ( G  Fn  B  /\  ran  G  C_  D ) )
108, 9anbi12i 460 . . . 4  |-  ( ( F : A --> C  /\  G : B --> D )  <-> 
( ( F  Fn  A  /\  ran  F  C_  C )  /\  ( G  Fn  B  /\  ran  G  C_  D )
) )
11 an4 586 . . . 4  |-  ( ( ( F  Fn  A  /\  ran  F  C_  C
)  /\  ( G  Fn  B  /\  ran  G  C_  D ) )  <->  ( ( F  Fn  A  /\  G  Fn  B )  /\  ( ran  F  C_  C  /\  ran  G  C_  D ) ) )
1210, 11bitri 184 . . 3  |-  ( ( F : A --> C  /\  G : B --> D )  <-> 
( ( F  Fn  A  /\  G  Fn  B
)  /\  ( ran  F 
C_  C  /\  ran  G 
C_  D ) ) )
13 df-f 5275 . . 3  |-  ( ( F  u.  G ) : ( A  u.  B ) --> ( C  u.  D )  <->  ( ( F  u.  G )  Fn  ( A  u.  B
)  /\  ran  ( F  u.  G )  C_  ( C  u.  D
) ) )
147, 12, 133imtr4g 205 . 2  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( F : A --> C  /\  G : B --> D )  ->  ( F  u.  G ) : ( A  u.  B ) --> ( C  u.  D
) ) )
1514impcom 125 1  |-  ( ( ( F : A --> C  /\  G : B --> D )  /\  ( A  i^i  B )  =  (/) )  ->  ( F  u.  G ) : ( A  u.  B
) --> ( C  u.  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    u. cun 3164    i^i cin 3165    C_ wss 3166   (/)c0 3460   ran crn 4676    Fn wfn 5266   -->wf 5267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-id 4340  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-fun 5273  df-fn 5274  df-f 5275
This theorem is referenced by:  fun2  5449  ftpg  5768  fsnunf  5784
  Copyright terms: Public domain W3C validator